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Abstract. The aim of this project is to introduce the Burnside ring of a given finite
group and to understand the ring structure of it using the mark homomorphism and
Gluck Idempotent Formula. First, a detailed definition of the Burnside ring is given
with its basic properties. Then the mark homomorphism is introduced to study the
Burnside algebra using the ghost ring. Finally, a formula, called Gluck Idempotent
Formula, is proven to calculate the basis elements of the Burnside algebra over Q,
which are the idempotents.

Introduction

Let G be a finite group. The Burnside ring of G is defined to be the Grothendieck ring
of the free commutative monoid generated by isomorphism classes of finite G-sets. We
will denote the Burnside ring of G by Ω(G). The addition and multiplication of Ω(G)
are defined by disjoint unions and Cartesian products, respectively. As an abelian group
Ω(G) is a free Z-module generated by the isomorphism classes of finite transitive G-sets,
which are in the one-to-one correspondence with the conjugacy classes of subgroups of
G. By letting Cl(G) denote the set of representatives of conjugacy classes of subgroups
of G, all finite transitive G-sets are of the form G/H where G/H denotes the set of
cosets of H in, G over H ∈ Cl(G) (see [2, 15.1.2]).

Consider the symmetric group S3 on three elements. We have

Cl(S3) = {(1), (C2), (C3), (S3)}

where Cn denotes the cyclic group of order n. Hence any transitive S3-set is iso-
morphic to one of S3/1, S3/C2, S3/C3, S3/S3. Therefore Ω(S3) is freely generated by
[S3/1], [S3/C2], [S3/C3], [S3/S3] as a Z-module. For the multiplication in terms of basis
elements in Ω(G), there is a nice formula called Mackey Product Formula stated and
proven in Section 1.

In Section 2, we define the ghost ring consisting the super class functions from Cl(G)
to Z to define an injective ring homomorphism from the Burnside ring to the ghost
ring. This homomorphism will be called the mark homomorphism. Thanks to these
tools, we can construct a matrix called the table of marks which is a representation of
the Burnside ring for a better understanding. Our first main theorem, Theorem 2.4,
states that there is a short exact sequence of abelian groups where first map is the
mark homomorphism. In light of this theorem, we construct an isomorphism between
Q⊗Z Ω(G) and the ghost algebra Q⊗Z Ω∗(G). Hence we can send the basis elements of
Q⊗Z Ω(G) into its ghost algebra and write them in terms of the primitive idempotents
of Q ⊗Z Ω(G) with integer coefficients. Since we have a bijection, we can take the
preimages of the primitive idempotents. Hence we may write the primitive idempotents
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of Q ⊗Z Ω(G) in terms of the transitive G-set basis elements of Ω(G) with rational
coefficients.

In [1], Gluck has proven an idempotent formula which gives the coefficients discussed
in Section 2. In Section 3, we give a proof of this formula by using combinatorial
techniques including Mobius inversion for partially ordered sets. Because of that, we
discuss posets in the beginning of this section. Gluck idempotent formula, Theorem 3.4,
is the second main theorem of this paper.

In the first two sections notations, definitions and results mostly followed from [2],
whereas those in Section 3 are mostly followed from [1].
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1. Burnside Rings

Aim of this chapter is to introduce the Burnside ring of a finite group G and discuss
the main properties of it. Let F be the free Abelian group

〈(X) : (X) is an isomorphism class of the G-set X〉.
We define multiplication in F as (X)(Y ) = (X ×Y ), therefore F becomes a commuta-
tive ring. Let F0 be the additive subgroup of F generated by all (X t Y )− (X)− (Y ),
then F0 is an ideal of F . Now we are ready to define the Burnside ring of G.

Definition 1.1. Let F and F0 be as above for a finite group G. Ω(G) = F/F0 is called
the Burnside ring of G.

Therefore the elements of Ω(G) are of the form [X] = (X) + F0. Addition in Ω(G)
is given by

[X] + [Y ] = [X t Y ]

and the multiplication is determined by

[X][Y ] = [X × Y ]

for every G-sets X and Y . Thus Ω(G) is a commutative ring with identity [G/G] and
zero element [∅].

Krull-Schmidt Theorem for G-sets (see [2, 15.1.8]) states that for any G-set X,

X ∼=
n⊔
i=1

λi(G/Hi)

where H1, H2, ..., Hn are representatives of all G-conjugacy classes of subgroups of G
and

λi =
| {x ∈ X : Gx is G-conjugate to Hi} |

[G : Hi]
.

Using this fact we will prove the following result to understand elements of the Burn-
side ring .
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Theorem 1.2. Let X and Y be G-sets. Then [X] = [Y ] in Ω(G) if and only if X ∼= Y .

Proof. It is trivial that X ∼= Y implies [X] = [Y ]. Assume that [X] = [Y ] i.e. (X) +
F0 = (Y ) + F0 so (X)− (Y ) ∈ F0. Then we may write

(X)− (Y ) =
∑
i

{(Ai t A′i)− (Ai)− (A′i)} −
∑
j

{
(Bj tB′j)− (Bj)− (B′j)

}
and therefore

(X) +
∑
i

(Ai) +
∑
i

(A′i) +
∑
j

(Bj tB′j) = (Y ) +
∑
j

(Bj) +
∑
j

(B′j) +
∑
i

(Ai t A′i).

If we define A =
⊔
i

Ai, A
′ =

⊔
i

A′i, B =
⊔
i

Bi and B′ =
⊔
i

B′i then the above equation

implies that
X t A t A′ t (B tB′) ∼= Y tB tB′ t (A t A′)

so by letting S = A t A′ tB tB′, we have

X t S ∼= Y t S.
Hence by Krull-Schmidt Theorem for G-sets (see [2, 15.1.8]), X ∼= Y . �

Theorem 1.3. Let H1, H2, ..., Hn be representatives of all G-conjugacy classes of sub-
groups of G. Given a G-set X, define Xi = {x ∈ X : Gx is G-conjugate to Hi}, for
every 1 ≤ i ≤ n. Then,

[X] =
n∑
i=1

λi[G/Hi]

for uniquely determined integers

λi =
|Xi|

[G : Hi]
.

Proof. By Krull-Schmidt Theorem for G-sets (see [2, 15.1.8]),

X ∼=
n⊔
i=1

λi(G/Hi).

The result follows from Theorem 1.2. �

The following result will provide a good perspective for Burnside rings.

Theorem 1.4. Let H1, H2, ..., Hn be representatives of all conjugacy classes of G. Then
Ω(G) is a free Z-module generated by

[G/H1], [G/H2], ..., [G/Hn].

Proof. Let [X] ∈ Ω(G). By Theorem 1.3,

[X] =
n∑
i=1

λi[G/Hi]

for some uniquely determined integers λi. Hence [G/Hi]’s generate Ω(G) as a Z-module.
Assume

n∑
i=1

λi[G/Hi] = 0
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for some integers λi. Without loss of generality we may assume that λi ≥ 0 when
i ∈ {1, ..., r} and λi < 0 otherwise for some integer 1 ≤ r ≤ n. Then,

r∑
i=1

λi[G/Hi] =
n∑

i=r+1

−λi[G/Hi].

Therefore by the uniqueness of λi’s in Theorem 1.3 we have λi = 0 for every 1 ≤ i ≤ n
which concludes that Ω(G) is freely generated by [G/Hi]’s. �

Example 1.5. Consider S3, the symmetric group of order 6 and D8, the dihedral group
of order 8.

(i) There are four conjugacy classes in S3 which are isomorphic to 1, C2, C3 and S3.
Hence we can write the Burnside ring of S3 as

Ω(S3) = [S3/S3]Z + [S3/C3]Z + [S3/C2]Z + [S3/1]Z.

S3

C3 C2C2 C2

{1}

Figure 1. Subgroup lattice of S3

(ii) D8 has 10 subgroups and 8 conjugacy classes of subgroups.

Cl(D8) =
{

(1), (C
(1)
2 ), (C

(2)
2 ), (C

(Z)
2 ), (C4), (V

(1)
4 ), (V

(2)
4 ), (D8)

}
.

Therefore,

Ω(D8) = [D8/D8]Z + [D8/V
(1)

4 ]Z + [D8/C4]Z + [D8/V
(2)

4 ]Z

+ [D8/C
(1)
2 ]Z + [D8/C

(Z)
2 ]Z + [D8/C

(2)
2 ]Z + [D8/1]Z.

Hence we have a basis for Ω(G). However we still do not have much information
about the multiplicative structure of Ω(G). The next result will lead us to make the
multiplication table of Ω(G).
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D8

C4V
(1)

4 V
(2)

4

Z(D8) = C
(Z)
2C

(1)
2C

(1)
2 C

(2)
2 C

(2)
2

1

Figure 2. Subgroup lattice of D8

Lemma 1.6 (Mackey Product Formula). For any subgroups H and K of G,

[G/H][G/K] =
∑

HgK⊆G

[G/(H ∩ gKg−1)] in Ω(G)

where the notation indicates that g runs through the representatives of the H\G/K
double cosets.

Proof. By Theorem 1.2, it suffices to prove that

(G/H)× (G/K) ∼=
⊔

HgK∈G

[G/(H ∩ gKg−1)].

Let X = (G/H)× (G/K) and for every g ∈ G define ḡ = (H, gK) ∈ X. Then

Gḡ = {g′ ∈ G : g′ḡ = ḡ} = {g′ ∈ G : g′H = H, g′gK = gK}
=
{
g′ ∈ G : g′ ∈ H, g−1g′g ∈ K

}
= H ∩ gKg−1.

Hence by Orbit-Stabilizer Theorem (see [2, 15.1.1]), OrbG(ḡ) ∼= G/(H ∩ gKg−1).
Notice that OrbG(ā) = OrbG(b̄) means that ā = gb̄ for some g ∈ G. Therefore it is

equivalent to (H, aK) = (gH, gbK). Hence OrbG(ā) = OrbG(b̄) if and only if g ∈ H
and aK = gbK which is equivalent to HaK = HgbK = HbK. Hence all OrbG(ḡ) are
disjoint. Moreover any G-orbit of X has an element of the form ḡ for some g ∈ G.
Thus

X =
⊔

HgK∈G

OrbG(ḡ) ∼=
⊔

HgK∈G

[G/(H ∩ gKg−1)].

�

Example 1.7. (i) Consider S3, taking C2 = 〈(1, 2)〉 as the representative of (C2)
call 1 = [S3/S3], x = [S3/C3], y = [S3/C2] and z = [S3/1]. We will show that the
multiplication table of the basis elements of Ω(S3) is the following.
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1 x y z

1 1 x y z
x x 2x z 2z
y y z y + z 3z
z z 2z 3z 6z

Table 1. Multiplication table of Ω(S3)

First notice that

[S3/S3][S3/H] =
∑

S3gH⊆S3

[S3/(S3 ∩ gHg−1)] =
∑
S3⊆S3

[S3/H] = [S3/H]

and

[S3/1][S3/H] =
∑

1gH⊆S3

[S3/(1 ∩ gHg−1)] =
∑
gh⊆S3

[S3/1] = [G : H] · [S3/1]

for every H 6 G. Therefore xz = 2x, yz = 3y and z2 = 6z. Moreover,

x2 = [S3/C3][S3/C3] =
∑

C3gC3⊆S3

[S3/(C3 ∩ gC3g
−1)] =

∑
C3gC3⊆S3

[S3/C3] = 2[S3/C3] = 2x,

xy = [S3/C3][S3/C2] =
∑

C3gC2⊆S3

[S3/(C3 ∩ gC2g
−1)] =

∑
C3gC2⊆S3

[S3/1] = [S3/1] = z

and finally,

(*) y2 = [S3/C2][S3/C2] =
∑

C2gC2⊆S3

[S3/(C2 ∩ gC2g
−1)]

= [S3/C2 ∩ 1C21)] + [S3/(C2 ∩ (1, 2, 3)C2(1, 3, 2))] = [S3/C2] + [S3/1] = y + z.

(ii) Consider C6, the cyclic group of order 6. Put 1 = [C6/C6], x = [C6/C3], y =
[S6/C2] and z = [C6/1]. Then,

x2 =
∑

C3gC3⊆C6

[C6/C3] = 2x,

xy =
∑

C3gC2⊆C6

[C6/1] = z,

y2 =
∑

C2gC2⊆C6

[C6/C2] = 3y.

Hence we have the following table.

1 x y z

1 1 x y z
x x 2x z 2z
y y z 3y 3z
z z 2z 3z 6z

Table 2. Multiplication table of Ω(C6)
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Notice that in (*), we have found the double cosets as

{1, (1, 2)}
and

{(1, 2, 3), (1, 3), (2, 3), (1, 3, 2)}
having cardinalities 2 and 4 whereas the G-sets corresponding them are of cardinalities
3 and 6, respectively. In what follows we investigate this relation and find a formula
stated in Corollary 1.9.

Proposition 1.8. Let H and K be subgroups of G and g ∈ G. Then the size of the
double coset HgK is

|HgK| = |H||K|
|H ∩ gKg−1|

.

Proof. Consider the map φ : HgK → HgKg−1 determined by φ(hgk) = hgkg−1 for
every h ∈ H, k ∈ K. If φ(h1gk1)φ(h2gk2), then h1gk1g

−1 = h2gk2g
−1 so h1gk1 = h2gk2

which means that φ is injective. Given any a ∈ HgKg−1 we have φ(ag) = a, so φ is
surjective. Therefore φ is a bijection.

Noting that gKg−1 is a subgroup of G,

|HgK| = |HgKg−1| = |H||gKg
−1|

|H ∩ gkg−1|
=

|H||K|
|H ∩ gKg−1|

.

�

Corollary 1.9. Let H and K be subgroups of G, g ∈ G and X = (G/H) × (G/K).
Let ḡ = (H, gK) ∈ X. Then,

|OrbG(ḡ)| = [G : H]

|K|
· |HgK|.

Proof. By Proposition 1.8,

|OrbG(ḡ)| = |G/H ∩ gKg−1| = [G : H]

|K|
· |HgK|.

�

2. The Mark Homomorphism

Let Cl(G) = {K1, K2, ..., Kn} be the set of representatives of all conjugacy classes
of a finite group G. We aim to continue exploring the Burnside ring of G. For this we
will define another ring structure that is easier to write a proper basis. Since G/Ki’s
generate Ω(G), enumerating Ki’s gives a characterization for all ring. Therefore the
following concept we will define will be beneficial to understand Ω(G).

Definition 2.1. Ω∗(G) := {f : Cl(G)→ Z | f is a function} with for any f1, f2 ∈
Ω∗(G) and K ∈ Cl(G),

(f1 + f2)(K) = f1(K) + f2(K)

(f1f2)(K) = f1(K)f2(K)

is called the ghost ring of G.
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Notice that Ω∗(G) is isomorphic to Z|Cl(G)| as rings with a ring isomorphism

f 7→ (f(K1), f(K2), ..., f(Kn)).

Definition 2.2. Given a G-set X and a subgroup H of G,

XH = {x ∈ X : hx = x, ∀h ∈ H}
is called H-invariant subset of X.

The cardinality of XH is usually referred as the number of H-fixed points of X and
it will be an important concept. Consider the map

ϕ : Ω(G)→ Ω∗(G)

such that
X 7→ f

where
f : Cl(G)→ Z with K 7→ |XK |

Let X and Y be G-sets and H be a subgroup of G, then one can say that

(X t Y )H = XH t Y H

(X × Y )H = XH × Y H

by Definition 2.2. Therefore ϕ is a ring homomorphism.

Definition 2.3. The homomorphism ϕ : Ω(G) → Ω∗(G) defined above is called the
mark homomorphism of G.

If we see Ω∗ as Z|Cl(G)| then the mark homomorphism can be seen as

ϕ : Ω(G)→ Z|Cl(G)|

where
X 7→ (|XK1 |, |XK2|, ..., |XKn|)

which provides the promised enumeration. Next, we will prove an important theorem
about the mark homomorphism.

Theorem 2.4. Let Cl(G) = {K1, K2, ..., Kn} be the set of representatives of all con-
jugacy classes of a finite group G and define ri := [NG(Ki) : Ki], also let Ω(G) be the
Burnside ring of G and

Ω∗(G) = {f : Cl(G)→ Z | f is a function}
be the ghost ring of G, then the sequence

0→ Ω(G)
ϕ−→ Ω∗(G)

ψ−→
n⊕
i=1

Z/riZ→ 0

is exact where

ϕ(X) = fX such that fX : Cl(G)→ Z with fX(K) = |XK |
is the mark homomorphism and

ψ(f)i =
∑

gKi∈NG(Ki)/Ki

f(〈g,Ki〉) mod ri.
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We will prove Theorem 2.4 in four steps. First, we will show that the Burn-
side homomorphism ϕ is injective. After that we will show ϕ(Ω(G)) ⊆ ker(ψ) and

Ω∗(G)/ϕ(Ω(G)) ⊆
n⊕
i=1

Z/riZ as the second and the third steps. Finally we will deduce

that ψ is surjective to conclude that ϕ(Ω(G)) = ker(ψ) and finish the proof. How-
ever, it is more beneficial to introduce some tools, we will use in the proof, as separate
lemmas.

Lemma 2.5 (Burnside’s lemma). Let G be a finite group and X be an arbitrary G-set.
Let X/G be denote the set of G-orbits of X. Then we have

|G| · |X/G| =
∑
g∈G

|X〈g〉|.

Proof. Notice that ∑
g∈G

|X<g>| =
∑
g∈G

| {x ∈ X : gnx = x,∀n ∈ N} |

=
∑
g∈G

| {x ∈ X : gx = x} |

= | {(g, x) : gx = x, g ∈ G, x ∈ X} |
=
∑
x∈X

|Gx|.

Then by Orbit-Stabilizer theorem,∑
g∈G

|X<g>| =
∑
x∈X

|G|/|OrbG(x)| = |G| ·
∑
x∈X

1/|OrbG(x)|

= |G| ·
∑

A∈X/G

∑
x∈A

1/|A|

= |G| ·
∑

A∈X/G

1 = |G| · |X/G|.

�

Lemma 2.6. Let H and K be subgroups of a finite group G, then

|(G/H)K | = [NG(H) : H] · n(K,H)

where n(K,H) is the number of G-conjugates of H containing K.

Proof.

|(G/H)K | = | {gH ∈ G/H : KgH = gh,∀k ∈ K} | = |
{
gH ∈ G/H : g−1kg ∈ H,∀k ∈ K

}
|

= | {gH ∈ G/H : Kg ⊆ H} | = | {gH ∈ G/H : K ⊆ gH} |.
Let giH’s be the distinct G-conjugates of H containing K and let njH’s be the cosets
of H in NG(H) so 1 ≤ i ≤ n(K,H) and 1 ≤ j ≤ [NG(H) : H]. We will prove that
ginjH’s are the all distinct elements of (G/H)K .

Since ginjH = giH ⊇ K, we have ginjH ∈ (G/H)K for all i, j. Assume ginjH =
ganbH for some 1 ≤ i, a ≤ n(K,H) and 1 ≤ j, b ≤ [NG(H) : H]. Then gi = ganbhn

−1
j
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for some h ∈ H so giH = ganbhnjH = gaH. and therefore i = a which leads that
njH = nbH and b = j. Hence all ginjH’s are distinct. Let gH ∈ (G/H)K . Then
K ⊆ gH which means gH = giH for some i. Then g−1

i g ∈ NG(H). Since every element
should belong to a coset, g−1

i g ∈ njH for some j. Therefore gH = ginjH and we are
done. �

Corollary 2.7. Let H and K be subgroups of a finite group G, then

(i) |(G/K)K | = [NG(K) : K]
(ii) |(G/H)K | 6= 0 if and only if K is contained in a G-conjugate of H.

In light of the mark homomorphism we can write a matrix or table whose (K,H)-th
entry is consisting of number of fixed points |(G/H)K | for H,K ∈ Cl(G) which are
usually called marks referring to the mark homomorphism. Using Lemma 2.6 we can
write this matrix as the product of two matrices whose entries given by n(K,H) and
[NG(H) : H]. Note that this matrix is upper triangular as what Corollary 2.7(ii) says.

Example 2.8. Consider S3. Then the table of marks appears as follows.

S3/1 S3/C2 S3/C3 S3/S3

1 6 3 2 1
C2 0 1 0 1
C3 0 0 2 1
S3 0 0 0 1
Table 3. Mark of tables of Ω(S3)

If we write it as a matrix we have
6 3 2 1
0 1 0 1
0 0 2 1
0 0 0 1

 =


1 3 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 ·


6 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 .
Notice that 6, 1, 2, 1 are [NG(H) : H]’s and the other matrix in the right hand side is
the matrix with entries given by n(K,H)’s.

Now we are ready to give proof of the theorem.

Proof of Theorem 2.4. Let X and Y be G-sets where |XK | = |Y K |, for any K ∈ Cl(G).

Then X =
n∑
i=1

αi[G/Ki] and Y =
n∑
i=1

βi[G/Ki] for some αi, βi ∈ Z. Assume X and Y are

not isomorphic as G-sets. This implies that there are some i’s such that αi 6= βi. Let
j = max({i ∈ {1, 2, ..., n} : αi 6= βi}). Therefore

∑
i≥j

αi|(G/Ki)
Kj | = |XKj | = |Y Kj | =∑

i≥j
βi|(G/Ki)

Kj | so 0 =
∑
i≥j

(αi − βi)|(G/Ki)
Kj | = (αj − βj)|(G/Kj)

Kj | = (αj − βj)rj.

Since rj 6= 0, αj = βj which is a contradiction. Hence X ' Y and ϕ is injective.
Now we aim to show that if f ∈ ϕ(Ω(G)), then for every K E H 6 G we have∑

hK∈H/K
f(〈h,K〉) ≡ 0 mod [H : K]. But f ∈ ϕ(Ω(G)) implies that f(〈h,K〉) =
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X〈h,K〉 = (X〈K〉)hK , so it sufficies to show that
∑
h∈H

X〈h〉 ≡ 0 mod |H| which is exactly

what Lemma 2.5 says. Hence ϕ(Ω(G)) ⊆ ker(ψ).
Let ui(Kj) := 1/ri · |(G/Ki)

Kj |. We claim that {u1, u2, ..., un} is a Z-basis of Ω∗(G).
By Lemma 2.6, ui(Kj) ∈ Z for all j. Let ei ∈ Ω∗(G) be such that

ei(Kj) =

{
1 i = j

0 otherwise.

{e1, e2, ..., en} gives a (standard) basis of Ω∗(G). Observe that

ui =
∑
j≤i

1/ri · |(G/Ki)
Kj | · ej = 1 · ei +

∑
j<i

1/ri · |(G/Ki)
Kj | · ej

i.e. there is an invertible upper-triangular matrix M whose all diagonal entries are 1
such that [e1 e2 ... en] ·M = [u1 u2 ... un]. Hence {u1, u2, ..., un} is a Z-basis of Ω∗(G).

Moreover r1u1, r2u2, ..., rnun ∈ ϕ(Ω(G)). Hence Ω∗(G)/ϕ(Ω(G)) ⊆
n⊕
i=1

Z/riZ.

ψ(ei) = ēi = (0, 0, ..., 1̄, ..., 0) so since {e1, e2, ..., en} is a basis of Ω∗(G) and {ē1, ē2, ..., ēn}
is a basis of

n⊕
i=1

Z/riZ, we can conclude that ψ is surjective.

Finally, |Ω∗(G)/ϕ(Ω(G))| ≤ |
n⊕
i=1

Z/riZ| = |ψ(Ω∗(G))| ≤ |Ω∗(G)/ ker(ψ)| and there-

fore |ϕ(Ω(G))| ≥ | ker(ψ)|. Thus we have shown that ϕ is injective, ψ is surjective and
ϕ(Ω(G)) = ker(ψ). Hence the given sequence is exact. �

Corollary 2.9. Ω∗(G)/ϕ(Ω(G)) ∼=
n⊕
i=1

Z/riZ.

As we proved in Theorem 2.4, the Mark homomorphism sends the basis elements
of Ω(G), namely [G/H] assuming H ∈ Cl(G), to

∑
K6H
|(G/H)K | · eK . However when

we attempt to send the basis elements eK ’s of Ω∗(G) to
∑
K6H

λH [G/H], the coefficients

λH ’s usually are not integers. Because of that we will introduce a new concept to make
desired calculations.

Definition 2.10. Let R be a commutative ring.

(i) The Burnside algebra of G over R is defined by R⊗ZΩ(G) and denoted by ΩR(G).
(ii) Ω∗R(G) := {f : Cl(G)→ R | f is a function}.

(iii) The map ϕR : ΩR(G) → Ω∗R(G) determined by ϕR(X) = f such that f(K) =
|XK | · 1R is called the extended mark homomorphism of G over R.

Notice that ϕR is a homomorphism of R-algebras. Moreover by Theorem 2.4 it is
injective. The following result indicates a condition for which ϕR is a bijection which
means that we can make the desired calculations.

Theorem 2.11. Let R be a commutative ring such that |G| is a unit of R. Then the
map ϕR : ΩR(G)→ Ω∗R(G) is an isomorphism of R-algebras and

ΩR(G) ∼= Ω∗R(G) ∼= R|Cl(G)|.
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Proof. Let Cl(G) be the set of representatives of all conjugacy classes of G. Define

uH(K) =
1

[NG(H) : H]
|(G/H)K |

for every H,K ∈ Cl(G). Let {eH : H ∈ Cl(G)} be the natural basis of Ω∗R(G). Then by
repeating the argument in the proof of Theorem 2.4, {uH : H ∈ Cl(G)} is an R-basis
of Ω∗R(G). Since |G| is a unit of R, [NG(H) : H] is also a unit for each H ∈ Cl(G).
Therefore by letting bH(K) = |(G/H)K |,

{[NG(H) : H] · uH : H ∈ Cl(G)} = {bH : H ∈ Cl(G)}

is an R-basis of Ω∗R(G). Since {bH : H ∈ Cl(G)} is also an R-basis of ΩR(G), we have
the desired result. �

Corollary 2.12. ΩQ(G) ∼= Ω∗Q(G).

3. Gluck Idempotent Formula

Let Cl(G) be the set of representatives of all conjugacy classes of a finite group G.
Let

eH(K) =

{
1 H is G-conjugate to K

0 otherwise

and

uH(K) := 1/[NG(H) : H] · |(G/H)K |.
Consider ΩQ(G) = Q⊗ZΩ(G) the Burnside algebra of G over Q. Notice that eH ’s are

the primitive idempotents of ΩQ(G) where each H ∈ Cl(G). In light of Corollary 2.12
whenever we have ϕQ(

∑
K6H

λH [G/H]) = eK , for some λH ∈ Q. Aim of this chapter is

to find out a formula for those λH ’s.

Example 3.1. In Example 2.8, we have found the marks of S3. Therefore we can write

[S3/1] = 6e1,

[S3/C2] = 3e1 + eC2 ,

[S3/C3] = 2e1 + 2eC3 ,

[S3/S3] = e1 + eC2 + eC3 + eS3 .

Using those we can calculate

e1 = 1/6[S3/1],

eC2 = [S3/C2]− 1/2[S3/1],

eC3 = 1/2[S3/C3]− 1/6[S3/1],

eS3 = [S3/S3]− 1/2[S3/C3]− [S3/C2] + 1/2[S3/1].

Instead of doing those calculations by hand, we will be using the idempotent formula
we will find. To determine the desired formula for the primitive idempotents of ΩQ(G),
known as Gluck Idempotent Formula, we will use some facts from combinatorial theory
of partially ordered sets.
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Definition 3.2. (i) A partial order is a binary relation on a set which is reflexive,
antisymmetric and transitive.

(ii) A partially ordered set (or a poset) is a set P together with a specified partial
order ≤ on P .

(iii) An interval of a poset P is defined by [a, b] = {x ∈ P : a ≤ x ≤ b} where a, b ∈ P
with a ≤ b.

The matrix

Di,j =

{
1 i ≤ j

0 otherwise

is called the incidence matrix of a poset P . Since its determinant is 1, it is invertible. So
we can define µ(i, j) = (D−1)i,j which is called the Mobius function of P . Consequently,∑

i≤k≤j

µ(i, k) =

{
1 i = j

0 otherwise

The subgroup lattice of a group is a poset with the subgroup inclusion. Moreover
the formula

(**) [G/H] =
∑

K∈Cl(G)

|(G/H)K | · eK

consists of a function defined on that poset. Fortunately, there is a classical result in
partially ordered set theory as follows.

Theorem 3.3 (Mobius Inversion). Let (P,≤) be a poset, µ be its Mobius function and
f, g : P → C be such that g(x) =

∑
y≤x

f(y). Then

f(x) =
∑
y≤x

µ(y, x)g(y).

Proof.∑
y≤x

µ(y, x)g(y) =
∑
y≤x

µ(y, x)(
∑
z≤y

f(z))

=
∑
z≤y≤x

µ(y, x)f(z) =
∑
z≤x

f(z)(
∑
z≤y≤x

µ(y, x)) = f(x).

�

Hence we are ready to state and prove the Gluck idempotent formula.

Theorem 3.4 (Gluck idempotent formula). Let L(G) be the subgroup lattice of G, µ
be the Mobius function of (L(G),6) and

eH(K) =

{
1 H is G-conjugate to K

0 otherwise

be a primitive idempotent of ΩQ(G) for each H ∈ L(G). Then we have

eH =
1

|NG(H)|
∑
K6H

µ(K,H) · |K| · [G/K].
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To use Theorem 3.3, in the proof, we will manipulate (**) to get a function depended
only K inside the sum.

Lemma 3.5. Take the notation in the Theorem 3.4. We have

[G/H] =
1

|H|
∑
K6H

|NG(K)| · eK .

To prove this lemma we need the following result.

Lemma 3.6. Let H and K be subgroups of a finite group G, then

|(G/H)K | = |NG(K)|
|H|

· c(K,H)

where c(K,H) is the number of G-conjugates of K contained in H.

Proof. Let L(G) be the subgroup lattice of G. Define ϑ : L(G) × L(G) → {0, 1} such
that for every A,B ∈ L(G),

ϑ(A,B) =

{
1 A 6 B

0 otherwise.

Then,

|(G/H)K | = | {gH ∈ G/H : Kg ⊆ H} | = 1

|H|
· | {g ∈ G : Kg ⊆ H} |

=
1

|H|
·
∑
g∈G

ϑ(Kg, H) =
1

|H|
·

∑
NG(K)g∈G/NG(K)

∑
ng∈NG(K)g

ϑ(Kng, H).

Since n ∈ NG(K) implies that Kng = Kg and the size of each coset of NG(K) is
|NG(K)| we have ∑

ng∈NG(K)g

ϑ(Kng, H) =

{
|NG(K)| Kg 6 H

0 otherwise.

Hence the result follows. �

Alternative Proof of Lemma 3.6. Let ξ(A) be denote the number of G-conjugates of a
subgroup A of G. H contains c(K,H) conjugates of K. Since each conjugate of H
contains equal number of conjugates of K, all conjugate of H contains ξ(H) · c(K,H)
many conjugates of K if we treat duplicates of K as different. On the other hand each
conjugates of K contained in exactly n(K,H) many conjugates of H. Therefore for
each conjugate of K, there are n(K,H) duplicates in ξ(H) · c(K,H) many conjugates.
Hence number of conjugates of K is

ξ(K) =
ξ(H) · c(K,H)

n(K,H)
.

Notice that ξ(A) = n(1, A) =
|(G/A)1|

[NG(A) : A]
=

|G|
|NG(A)|

for every A 6 G, by

Lemma 2.6. Therefore we have
NG(H)

NG(K)
=
c(K,H)

n(K,H)
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Hence the result follows from Lemma 2.6. �

Proof of Lemma 3.5.

[G/H] =
∑

K∈Cl(G)

|(G/H)K | · eK =
∑

K∈Cl(G),K6H

|(G/H)K | · eK

=
∑
K6H

1

c(K,H)
|(G/H)K | · eK =

1

|H|
∑
K6H

|NG(K)| · eK .

�

We complete the proof of the Gluck idempotent formula.

Proof of Theorem 3.4. By Lemma 3.5 we have

|H| · |G/H] =
∑
K6H

|NG(K)| · eK .

Hence apply Theorem 3.3 to get

|NG(H)| · eH =
∑
K6H

µ(K,H) · |K| · [G/K].

as desired. �
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