
SCHUR-ZASSENHAUS THEOREM AND HALL SUBGROUPS

AHMET BERKAY KEBECI

Abstract. The goal of this project is to introduce Hall subgroups, to explain some
tools for understanding Hall subgroups, including the Schur-Zassenhaus Theorem,
and to introduce π-separable groups in light of these tools. First, a criterion for
nilpotence is discussed. Then a detailed proof of Schur-Zassenhaus Theorem is given.
After a short introduction to π-subgroups, Hall subgroups are introduced to lead to
some results on π-separable and π-solvable groups. Similarities between the results
on Hall subgroups and Sylow theorems are emphasized. Finally, relations between
solvability and π-separability are presented.

Introduction

Let G be a finite group. A subgroup whose order is pn, where n is the multiplicity of
a prime p in the order of G, is called a Sylow p-subgroup of G. For a fixed prime dividing
the order of the group, Sylow proved that such subgroups always exist and conjugate
to each other([6, 1.6.16]). He also proved that the number of Sylow p-subgroups divides
|G|
pn

and it is congruent to 1 mod p. These results are known as the Sylow theorems.

Consider the dihedral group of order 30, D30 = 〈x, a|a15 = x2 = e, xax−1 = a−1〉. It
contains 5 subgroups of order 6 = 2 ·3; each of them is isomorphic to D6 and conjugate
to each other. However the Sylow theorems do not give this result because D6 is not a
p-subgroup. So to examine such subgroups we need a new concept. To introduce this
new concept we will need some preliminary definitions. Let π be a non-empty set of
primes. A π-number is a positive integer whose prime divisors belong to π. (Note that
1 is a π-number for every π.) A group element whose order is a π-number is called a
π-element and a group is called π-group if every element of it is a π-element. Notice
that a finite group is a π-group if and only if its order is a π-number. In this project we
will take it as a definition, since we will work on finite groups. A subgroup of G that is a
π-group is called π-subgroup. One important thing about these definitions is that when
we take π = {p}, where p is prime, we speak of p-elements and p-groups. In the above
example, D6 is a {2, 3}-subgroup of D30. Moreover it is a maximal {2, 3}-subgroup.
We will give a special name for such subgroups.

Definition 0.1. Let G be a group and let π be a set of primes. A maximal π-subgroup
of G is called Sylow π-subgroup of G.

Now consider the alternating group, A5, of order 60 and the set of primes π = {3, 5}.
The Sylow {3, 5}-subgroups of A5 are isomorphic to either C3 or C5, so not all of them
are conjugate. Moreover the C3 s have index 20 and the C5 s have index 12. However,
taking π = {p}, a Sylow p-subgroup is a π-group and its index is a π′-number where
π′ is the complement of π in the set of prime numbers. For π-subgroups we will have
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a similar definition. A π-subgroup will be called Hall π-subgroup, if its index is a π′-
number. In Section 2, Hall subgroups are introduced in detail. A Hall {3, 5}-subgroup
of A5 should have index 4 and order 15, but A5 does not have any such subgroup. So
the existence of Hall subgroups is not guaranteed.

We investigate when a finite group has Hall π-subgroups and if they exist, when these
subgroups are conjugate. For this cause, we state and prove the Schur-Zassenhaus
theorem (Theorem 3.1) in Section 3. This theorem shows that if a normal Hall π-
subgroup exists, then Hall π′-subgroups exist and are conjugate. Theorem 3.5 then
shows that solvable groups have Hall subgroups and these subgroups are conjugate,
without needing that normality condition.

In Section 4, we introduce π-separable groups. We see solvable groups as a first
example of such groups. Then we collect some information about π-separable groups
such as the upper π-series. Later we prove Theorem 4.11 and Theorem 4.13, which
say that in π-separable groups, Hall subgroups always exist and are conjugate. This
generalizes the result in solvable groups.

Finally, we prove Theorem 4.14, which shows that the existence of Hall p′-subgroups
for every prime p dividing the order of the group implies solvability. We understand
the connection between solvability and Hall subgroups. Moreover, this theorem pro-
vides a criterion for solvability in terms the existence of Hall subgroups as stated in
Corollary 4.17.

Notations, definitions and results are mostly followed from Derek J.S. Robinson’s
book, [6].
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1. P. Hall’s Criterion for Nilpotence

Let G be a finite group. If a normal subgroup of G and its quotient group are solvable
then G is solvable. We cannot make this exact claim for nilpotence, but we have a
similar statement. We look at a normal subgroup and the quotient group of its derived
subgroup. If both of them are nilpotent we say G is nilpotent (Theorem 1.4). In this
section, we will prove this statement. To complete the proof we will give a property of
Frattini subgroup which is defined as follows.

Definition 1.1. Let G be a group. The Frattini subgroup of G is defined to be the
intersection of all maximal subgroups of G and denoted by FratG or Φ(G). For the
case that G has no maximal subgroups, it is defined by FratG = G.

There is another way to see the Frattini subgroup. For this we define non-generators.

Definition 1.2. Let G be a group. An element g of G is called a non-generator or a
non-generating element of G if whenever S is a generating set for G such that g ∈ S,
S \ {g} is also a generating set for G.
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Note that FratG is also the set of all non-generators of G (see [6, 5.2.12]). The
required property of the Frattini subgroup for Theorem 1.4 is given as follows.

Lemma 1.3. Let G be a finite group. If N E G then FratN 6 FratG.

Proof. Since FratN is a characteristic subgroup in N and N E G, we have FratN E G.
Now assume that FratN 
 FratG. Then, FratN 
M for some maximal subgroup M
of G. Then G = M ·FratN . Hence N = N ∩G = N ∩ (M ·FratN) = (N ∩M) ·FratN .
However FratN is the set of non-generators of N , this implies that N = N ∩M . So
FratN 6 N 6M , which is a contradiction.

�

The reader can see [6, p. 135-137], for more detailed information about Frattini
subgroups. Now we have all the tools to introduce a criterion for nilpotence as promised.

Theorem 1.4 (P. Hall’s criterion for nilpotence). Let G be a finite group and N E G.
If N and G/N ′ are nilpotent, then G is nilpotent.

Proof of Theorem 1.4. Let N E G, N and G/N ′ be nilpotent and M be a maximal
subgroup of N . Since N is nilpotent, M is normal and has prime index. Then N/M
is a cyclic group, hence abelian. Therefore N ′ 6 M . But this is true for all maximal
subgroups of N , so N ′ 6 FratN . Since N E G, then by Lemma 1.3, FratN 6 FratG.
So N ′ 6 FratG and (FratG)/N ′ E G/N ′. Hence since G/N ′ is nilpotent, G/FratG ∼=
(G/N ′)/((FratG)/N ′) is also nilpotent. Then every maximal subgroup of G/FratG is
normal (see [6, 5.2.4]). As FratG is already contained in every maximal subgroup of
G, every maximal subgroup of G is normal. Thus G is nilpotent (see [6, 5.2.4]).

�

Remark 1.5. Actually, Theorem 1.4 is true for all groups, not only for finite groups.
Here we gave the proof for the finite case. For a proof including infinite groups, see
[6, 5.2.10].

2. Hall Subgroups

One of the crucial subjects for this project is Hall subgroups. In this section, we
give the definition of Hall subgroups and introduce some basic properties of normal
π-subgroups. For more details about this topic, see [6, p. 252-253].

Definition 2.1. Let G be a finite group. A subgroup H 6 G is called a Hall π-subgroup
if H is a π-subgroup and [G : H] is a π′-number.

Notice that a Hall {p}-subgroup is a Sylow p-subgroup so it always exists. However,
when π contains more than one prime the situation changes. As we see in Exam-
ple 2.2, the existence of such subgroups is not guaranteed. On the other hand Sylow
π-subgroups (see Definition 0.1) always exist, by definition. It is easy to see that if H
is a Hall π-subgroup of a finite group G, then H is also a Sylow π-subgroup. On the
other hand let S be a Sylow π-subgroup of a finite group G0. If Hall π-subgroups exist
in G0, then S is one of them. So actually for a finite group, Hall π-subgroups exists if
and only if Hall and Sylow π-subgroups are same.

Example 2.2. Consider the alternating group, A5, of order 60 and the dihedral group,
D210, of order 210.
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(i) The Hall {2, 3}-subgroups of A5 are isomorphic to A4.
(ii) There is no Hall {2, 5}-subgroup of A5. The Sylow {2, 5}-subgroups of A5 are

isomorphic to D10, the dihedral group of order 10.
(iii) The Hall {2, 3, 7}-subgroups of D210 are isomorphic to D42.

Let H, K be π-subgroups of a group G and K / G. One can say that H ∩ K and
HK/K are π-subgroups. Therefore HK is a π-subgroup. Similarly, if we take two
normal π-subgroups then their product is also a normal π-subgroup. Hence there is
the unique maximum normal π-subgroup of G. We will denote this subgroup by Oπ(G).
Note that Oπ(G) is a characteristic subgroup of G.

By definition, any normal π-subgroup of G is contained in Oπ(G). The next theorem
shows that any subnormal π-subgroup of G is also contained in Oπ(G).

Theorem 2.3. If H is a subnormal π-subgroup of a finite group G, then H 6 Oπ(G).

Proof. If H is subnormal, then there is a subnormal series from H to G,

H = H0 / H1 / H2 / . . . / Hn−1 / Hn = G.

H 6 Oπ(H1), since H is a normal π-subgroup of H1. Assume H 6 Oπ(Hi) for
some i < n. Since Oπ(Hi) is characteristic in Hi, Oπ(Hi) is normal in Hi+1. Then,
Oπ(Hi) 6 Oπ(Hi+1) and by assumption, H 6 Oπ(Hi+1). Therefore by induction,
H 6 Oπ(Hi) for every i. Thus, H 6 Oπ(Hn) = Oπ(G).

�

Theorem 2.4. Let G be a finite group. Oπ(G) is the intersection of all the Sylow
π-subgroup of G.

Proof. Let R := Oπ(G) and let S be a Sylow π-subgroup of G. Then RS is a π-group
and therefore R 6 S. On the other hand, the intersection of all the Sylow π-subgroup
of G is a normal π-subgroup of G, so it is contained in Oπ(G).

�

3. The Schur-Zassenhaus Theorem

In this section, we will prove the Schur-Zassenhaus Theorem and some of its corol-
laries. Since it plays a critical role in the understanding Hall subgroups, the Schur-
Zassenhaus Theorem is one of the major parts of this project. For a more detailed
explanation about its proof, see [1, Section 6 and 9].

Theorem 3.1 (Schur-Zassenhaus theorem). Let G be a finite group and let N E G.
Assume that |N | = n and [G : N ] = m are relatively prime. Then, G contains a
subgroup of order m and any two such subgroups are conjugate in G.

To prove the Schur-Zassenhaus Theorem, some results from the theory of group
extensions are required. The following lemma provides us all the information we need.

Definition 3.2. Let G be a group, N be a normal subgroup of G and Q be isomorphic
to the quotient group G/N . A group extension of Q by N is a short exact sequence

1→ N
ε−→ G

ν−→ Q→ 1

i.e., Im(ε) = ker(ν), Im(ν) = Q and ker(ε) = 1.
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Lemma 3.3. [1, Proposition 6.3] Let 1 → N
ε−→ G

ν−→ Q → 1 be a group extension of
Q by N . For each x ∈ Q, let tx ∈ G be such that ν(tx) = x. Then,

(a) For every g ∈ G, there exist unique elements x ∈ Q and a ∈ N such that g = txε(a).
(b) For every x ∈ Q and a ∈ N , there exists a unique element αx(a) ∈ N such that

ε(αx(a)) = txε(a)t−1x .
(c) For every x, y ∈ Q, there exists a unique element k(x, y) ∈ N such that

txty = ε(k(x, y))txy. Moreover, αx ◦ αy = k(x, y)αxyk(x, y)−1.
(d) For every x, y, z ∈ Q, k(x, y)k(xy, z) = αx(k(y, z))k(x, yz).
(e) Let also t′x ∈ G be such that ν(t′x) = x, for each x ∈ Q. Then there exists a unique

function g : Q→ N such that t′x = tx · ε(g(x)), for each x ∈ Q.
Also for every x, y ∈ Q, if α′ and k′ are constructed from t′x, then α′x = f(x)αxf(x)−1

and k′(x, y) = f(x)αx(f(y))k(x, y)f(xy)−1 where f : Q→ N is defined by
f(x) := αx(g(x)).

Proof of Theorem 3.1. Case 1: Assume N is an abelian group.

(Existence) Let Q := G/N and consider the extension of Q by N ;

1→ N
ε−→ G

ν−→ Q→ 1

For all x ∈ Q let tx ∈ G be such that ν(tx) = x. Define a ∈ N , αx(a) ∈ N and
k(x, y) ∈ N as in Lemma 3.3. Let c(x, y) := ε(k(x, y)) ∈ ε(N). Then tx ·ty = c(x, y)·txy.
By Lemma 3.3(d), k(x, y)k(xy, z) = αx(k(y, z)k(x, yz)). Then by applying ε to each
side, we get

c(x, y)c(xy, z) = txc(y, z)c(x, yz),

since we have ε(αx(a)) = txε(a), for all a ∈ N from Lemma 3.3(c). Let g(ζ) :=∏
z∈Q

c(z, ζ). Because c(z, ζ) ∈ ε(N), we have g(ζ) ∈ ε(N) for every ζ ∈ Q. Then since

ε(N) is abelian, from the last equation,∏
z∈Q

c(x, y)
∏
z∈Q

c(xy, z) =
∏
z∈Q

txc(y, z)
∏
z∈Q

c(x, yz).

Hence we have [c(x, y)]mg(xy) = txg(y)g(x).
Since gcd(n,m) = 1, there exists r ∈ Z such that rm ≡ 1 (mod n). Set h(ζ) := g(ζ)r,

yα := t−1α h(α) and K := {yα : α ∈ Q}. K is a subset of G. We will prove that K is a
subgroup of order m and K will be the subgroup we are looking for. Let yα, yβ ∈ K.
Then,

yβyα = t−1β h(β)t−1α h(α) = t−1β t−1α ·tα h(β)h(α) = t−1αβ · c(α, β)−1 ·tα h(β)h(α).

But,

tαh(β)h(α) =tα (g(β)r)g(α)r = (tαg(β)g(α))r

= ([c(α, β)]mg(αβ))r = [c(α, β)]rm · g(αβ)r = c(α, β) · h(αβ).

So,

yβyα = t−1αβ · c(α, β)−1 · c(α, β) · h(αβ) = t−1αβ · h(αβ) = yαβ.
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So K is a subgroup of G. Now assume yα = yβ. Then yαy
−1
β = 1. However, our

last result implies that yβ−1α = 1. By letting γ := β−1α, we get yγ = 1 and then
t−1γ h(γ) = 1. But h(γ) ∈ ε(N), so tγ ∈ ε(N). Therefore γ = ν(tγ) = 1. Thus, α = β.
So for every α in Q, we get different yα, then |K| = |Q| = m. K’s being a subgroup of
order m in G completes the existence part of this case.

(Conjugacy) Let H and H∗ be subgroups of G with |H| = |H∗| = m. Then G =
HN = H∗N and H ∩ N = 1 = H∗ ∩ N . Let Q := G/N again. So Q = HN/N =
H∗N/N . Take the same extension again:

1→ N
ε−→ G

ν−→ Q→ 1

For all x ∈ Q, let ux ∈ H and u∗x ∈ H∗ be such that ν(ux) = x and ν(u∗x) = x. By
Lemma 3.3(e), u∗x = ux · ε(g(x)) for some unique map g : Q→ N . Let a(x) := ε(g(x)).
So a : Q→ ε(N). Then, u∗x = ux · a(x). Also,

u∗xy = c(x, y)−1u∗xu
∗
y = c(x, y)−1uxa(x)uya(y)

= c(x, y)−1uxuy ·u
−1
y a(x)a(y) = uxy ·u

−1
y a(x)a(y)

So, a(xy) = u−1
y a(x)a(y). Let b :=

∏
x∈Q

a(x). Then by taking products in the above

equation and using that ε(N) is abelian,

b =u−1
y b · a(y)m.

Since gcd(n,m) = 1, there exists r ∈ Z such that rm ≡ 1 (mod n). So let c := br.

Then cm = brm = b, so by the above equation cm = u−1
y (cm) · a(y)m and c = u−1

y c · a(y)

therefore a(y) = u−1
y (c−1) · c. Thus u∗y = uya(y) = uy ·u

−1
y (c−1) · c = c−1uyc. Hence

H∗ = c−1Hc.

General Case: Assume N is any normal subgroup.

(Existence) Assume that existence part is not correct and G is a counterexample
of minimal order. Let P ∈ Sylp(N). By the Frattini Argument (see [6, 5.2.14]),
NG(P )N = G. Assume NG(P ) < G. By Second Isomorphism Theorem, N ∩NG(P ) /
NG(P ) with [NG(P ) : N ∩ NG(P )] = [NG(P )N : N ] = [G : N ] = m, relatively
prime to |N ∩ NG(P )|. Then by minimality of G, there exists H 6 NG(P ) such that
|H| = m. But this implies that H 6 G which is a contradiction by assumption.
Therefore NG(P ) = P and P E G, so P E N . But this is for every Sylow subgroup
of N . Thus, N is nilpotent so Z(N) is non-trivial. Let G := G/Z(N). Also let
N be the image of N in G. So by minimality of G, there exists H 6 G such that
|H| = [G : N ] = [G : N ] = m. Let H be the inverse image of H. Assume H < G.
By minimality of G, there exists K 6 H such that |K| = [H : Z(N)] = |H| = m.
However K is also a subgroup of G with order m. Hence this contradicts G being a
counterexample. Therefore G = H. Hence G = H and N = 1. Thus N = Z(N) which
leads that N is abelian. Finally by the abelian case, we have existence.
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(Conjugacy) Let H,H∗ 6 G with |H| = |H∗| = m. Assume that H is not conjugate
to H∗ and G is a counterexample of minimal order.

Case (i): Suppose that N is solvable.
Note that N ′ 6= N , by solvability of N , and N ′ 6= 1, by abelian case. We will

consider G/N ′. Since N/N ′ is an abelian normal subgroup of G/N ′, by the abelian
case, HN ′/N ′ and H∗N ′/N ′ are conjugate in G/N ′. Then gH 6 H∗N ′, for some
g ∈ G. Since N ′ is a proper subgroup of N , we know that H∗N ′ is a proper subgroup
of H∗N = G. It follows by minimality that gH and H∗ are conjugate in H∗N ′ and
therefore in G. Thus, H and H∗ are conjugate in G.

Case (ii): Suppose that G/N is solvable.
Set π := {p prime : p |m} and R := Oπ(G). Since H and H∗ are Sylow π-subgroups,

R 6 H ∩H∗ by Theorem 2.4. Now consider G/R. Since Oπ(G/R) = 1, we may sup-
pose that R = 1. Let L/N be a minimal normal subgroup of G/N . Then since G/N
is solvable, L/N is an elementary abelian p-group (see [5, Theorem 6.13]) for some
p ∈ π. Also, [L : H ∩ L] = [LH : H] = [G : H] = n which is a p′-number. Therefore,
H ∩ L ∈ Sylp(L). Similarly, H∗ ∩ L ∈ Sylp(L). By the Sylow theorems, there exists
g ∈ G such that H∩L = g(H∗∩L) = gH∗∩ gL = gH∗∩L/ gH∗. So, H∩L/〈H, gH∗〉.
Now let J := 〈H, gH∗〉. Assume J = G. Then H ∩ L / G hence H ∩ L 6 R = 1 so
L/N = 1. But this contradicts L/N ’s being a minimal normal subgroup of G/N . Then
J < G. Finally use minimality to conclude that H and gH∗ are conjugate in J and
thus in G. Hence H and H∗ are conjugate in G.

Since |N | and |G/N | are relatively prime, at least one of them must be odd. So
Feit-Thompson Theorem [3] guarantees that at least one of N and G/N is solvable.
This completes the proof.

�

Corollary 3.4. Let G be a finite group and let N E G. Assume that |N | = n and
[G : N ] = m are relatively prime. Let m1 be a divisor of m. Then a subgroup of G
with order m1 is contained in a subgroup of order m, whose existence is guaranteed by
the Schur-Zassenhaus theorem.

Proof. Let |M | = m, |M1| = m1 and M,M1 < G. Then by the Schur-Zassenhaus
Theorem, G = MN . Then M1N = M1N ∩ G = M1N ∩MN = (M1N ∩M)N . Since
(M1N ∩M) ∩N 6 M ∩N = 1, we have |M1N ∩M | = |(M1N ∩M)N : N | = |M1N :
N | = |M1| = m1. Then by applying the Schur-Zassenhaus Theorem to M1N , there
exists g ∈ G such that M1 = g(M1N ∩M) 6 gM , whose order is m.

�

Theorem 3.1 shows that if there is a normal Hall π-subgroup in a finite group then
Hall π′-subgroups exist and moreover, they are conjugate. By using Theorem 3.1, we
will prove another result. This time, we remove normal subgroup from conditions but
add solvability condition. This theorem is taken from [7, Theorem 2].

Theorem 3.5 (Extended Sylow theorem for solvable groups). Let G be a finite solvable
group and let |G| = mn such that m and n are relatively prime.Then, G contains a
subgroup of order m and any two of such groups are conjugate in G.
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Proof. Let K be a minimal normal subgroup of G. Then K is an elementary abelian
p-group (see [5, Theorem 6.13]) for some p dividing |G|. Then either p|m or p|n.

(Existence) Assume that existence part is not true and let G be the minimal coun-
terexample by order.

Case 1: If p|m, then since K is nontrivial, |G/K| < |G|. Also |G/K| = n · m|K| where

n and m
|K| are relatively prime. So by minimality, G/K has a subgroup D/K of order

m/|K|. Then D 6 G with |D| = m.
Case 2: If p|n, then again since K is nontrivial, |G/K| < |G| and |G/K| = m · n

|K|
where m and n

|K| are relatively prime. Similarly by minimality, G/K has a subgroup

D/K of order m. Then by Schur-Zassenhaus Theorem, D has a subgroup D0 such that
|D0| = m. Then D0 6 G.

(Conjugacy) Again, assume that conjugacy part is not true and let G be the minimal
counterexample by order. Let D1, D2 6 G such that |D1| = |D2| = m.

Case 1: If p|m, then since p - n = |G|
|D1| , we have p - |D1K|

|D1| = |K|
|D1∩K| = pa

|D1∩K| for some

a ∈ N. Then |D1 ∩K| = pa = |K|. So D1 ∩K = K. Thus K 6 D1. Likewise K 6 D2.
Then by minimality, D1/K and D2/K are conjugate in G/K. Thus D1 and D2 are

conjugate in G.
Case 2: If p|n, then D1 ∩K = 1. Then |D1K/K| = |D1| = m. Likewise |D2K/K| =

m. So by minimality, D1K/K and D2K/K are conjugate in G/K. Then there is some
g ∈ G such that gD1 6 D2K. Then by Schur-Zassenhaus Theorem, gD1 and D2 are
conjugate in D2K and hence in G. Thus, D1 and D2 are conjugate in G.

�

4. π-Separable Groups

In this section, we will introduce π-separable groups and π-solvable groups. We ob-
serve that there is a relationship between π-separability and Hall π-subgroups. We find
some satisfying answers to our question, that is, which groups do have Hall subgroups.
We will see that π-Separable groups is an answer to this question. The reader can find
detailed information about this section in [6, Section 9.1].

For this section, every group will be assumed finite and π will be a set of primes,
unless stated otherwise.

Definition 4.1. A π-series of G is a subnormal series such that each factor is either
a π-group or a π′-group.

In addition, a π-series is called p-series when π = {p}. So the factor of p-series are
either p-groups or have orders relatively prime to p.

Definition 4.2. A group G is called π-separable if there exists a π-series of G.

Proposition 4.3. A finite solvable group is π-separable for all π.

Proof. Let G be a finite solvable group and let π be a set of primes. Take the derived
series of G.

G = G(0) D G(1) D ... D G(n−1) D G(n) = 1

Let 0 6 i 6 n − 1. Since G(i)/G(i+1) is abelian, it has a Hall π-subgroup, say
Hi/G

(i+1). Also Hi/G
(i+1) E G(i)/G(i+1). Then G(i+1) E Hi E G(i) and G(i)/Hi is a
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π′-group. Thus,

G = G(0) D H0 D G(1) D H1 D ... D G(n−1) D Hn−1 D G(n) = 1

is a π-series of G.
�

Definition 4.4. Let G be a finite group and let π be a set of primes.

(i) G is called p-solvable if G has a p-series.
(ii) G is called π-solvable if G has a π-series such that each factor is either a π′-group

or a p-group for some p ∈ π.

Note that (ii) is a generalization of (i). A p-solvable group is π-solvable and π-
separable for π = {p}.

Also, note that every subgroup and every image of a π-separable [π-solvable] group
is π-separable [π-solvable].

Proposition 4.5. A finite group is solvable if and only if it is p-solvable for every p
prime dividing the order of the group.

Proof. According to Proposition 4.3 by taking π = {p}, a solvable finite group is p-
solvable for every p.

Now let G be a p-solvable group for every prime p dividing its order. Let π(G) be
the set of prime divisors of |G|. We will induct on the cardinality of π(G). If π(G)
has only one element then G is a p-group, so it is solvable. Assume that a group H
is solvable when π(H) has fewer than n elements. Let π(G) has n elements, namely,
p1, p2, . . . , pn. Since G is p1-solvable, it has a π-series such that each factor is either
a p1-group or p1

′-group. Factors that are p1-groups are solvable. Other factors, being
p1
′-groups, are {p2, p3, . . . , pn}-groups. So the number of prime divisors of their orders

are less than n. Also they are pi-solvable for 2 ≤ i ≤ n, since G is pi-solvable. Then
by the inductive step, they are solvable. Thus each factor of this π-series is solvable,
hence G is solvable.

�

To understand π-separable groups better, we will have a notion of the upper π-series.
This concept will provide us a characterization for π-separable groups like derived series
of solvable groups or central series of nilpotent groups.

Let G be a finite group. It is obvious that Oπ(G) = 1 where G = G/Oπ(G).
We consider Oπ′(G) and denote its preimage in G by Oπ,π′(G). Similarly we define
Oπ,π′,π(G) to be the inverse image of Oπ(G/Oπ,π′(G)) in G. Continuing this way we
obtain a series of characteristic subgroups

1 E Oπ(G) E Oπ,π′(G) E Oπ,π′,π(G) E Oπ,π′,π,π′(G) E . . .

where each factor is either a π-group or a π′-group. As we define formally below, this
series is going to be called the upper π-series of G.

Definition 4.6. Let G be a group. The upper π-series of G is defined to be the π-series

1 = P0 / N0 / P1 / N1 / . . . / Pm / Nm / . . .

such that Ni/Pi = Oπ(G/Pi) and Pi+1/Ni = Oπ′(G/Ni).
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Lemma 4.7. Let G be a π-separable group and let 1 = H0/K0/H1/K1/. . ./Hm/Km =
G be a π-series of G such that Ki/Hi is a π-group and Hi+1/Ki is a π′-group for each
i. Then Hi 6 Pi and Ki 6 Ni where {Pi} and {Ni} are the terms of the upper π-series
of G as above. In particular, Nm = G.

Proof. First we will prove that Hi 6 Pi for every i, by induction. For the base case,
1 = H0 6 P0 = 1. Assume Hi 6 Pi for a fixed i. We know that Ki is subnormal
in G and Pi is normal in G, so KiPi is subnormal in G. KiPi/Pi ∼= Ki/(Ki ∩ Pi)
is a π′-group. So KiPi/Pi is a subnormal π′-subgroup of G/Pi. Hence by Theo-
rem 2.3, KiPi/Pi 6 Oπ′(G/Pi) = Ni/Pi. Thus, Ki 6 Ni. By the same argu-
ments, Hi+1Ni/Ni is a subnormal π′-subgroup of G/Ni. So again by Theorem 2.3,
Hi+1Ni/Ni 6 Oπ′(G/Ni) = Pi+1/Ni. Hence, Hi+1 6 Pi+1 and we are done.

We have already proved that Hi 6 Pi implies Ki 6 Ni.
�

Corollary 4.8. A finite group G is π-separable if and only if the upper π-series of G
terminates in G.

Definition 4.9. Let G be a group.

(i) A chief series of G is a normal series G = Nn D Nn−1 D ... D N1 D N0 = 1 such
that, for each i, Ni/Ni−1 is a minimal normal subgroup of G/Ni−1.

(ii) A composition series of G is a subnormal series such that each factor is simple.

Having these definitions, next theorem states that there are some equivalent ways
to define π-separable groups.

Theorem 4.10. Let G be a finite group. The following conditions are equivalent.

(i) G is π-separable.
(ii) G is π′-separable.

(iii) There is a π-series for G that is a normal series.
(iv) There is a π-series for G that is a characteristic series.
(v) The upper π-series of G terminates in G.

(vi) The upper π′-series of G terminates in G.
(vii) Any chief series of G is a π-series.

(viii) Any composition series of G is a π-series.

Proof. By definition, (i) and (ii) are equivalent. By 4.8, (i) and (v) are equivalent.
Likewise (ii) and (vi) are equivalent. Hence (i), (ii), (v) and (vi) are equivalent. Since
the upper π-series is a characteristic series, (v) implies (iv). Also any characteristic
series is a normal series, so (iv) implies (iii). Also (iii) implies (i) by definition. Thus,
(i), (ii), (iii), (iv), (v) and (vi) are equivalent.

Assume G is π-separable. Let

G = Nn D Nn−1 D ... D N1 D N0 = 1

be a chief series of G. So Ni is a normal subgroup of G and Ni/Ni−1 is characteris-
tically simple for all i. Also since G is π-separable, Ni/Ni−1 is π-separable too. So
Oπ(Ni/Ni−1) = 1 and Oπ′(Ni/Ni−1) = Ni/Ni−1 or vice versa. Then Ni/Ni−1 is either a
π-group or π′-group. Thus, (i) implies (vii). Also, (vii) implies (i), by definition. So
(i) and (vii) are equivalent.
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Again assume G is π-separable. Then every composition factor of G is π-separable,
but they are also simple. So each of them is either a π-group or π′-group. Then (i)
implies (viii). Again the other way around comes from the definition. Thus (i) and
(viii) are equivalent.

�

Next results (Theorem 4.11 and Theorem 4.13) can be found in [6, 9.1.6]. These re-
sults, being similar with the Sylow theorems, are some of the most important properties
of π-separable groups.

Theorem 4.11. Let G be a π-separable group and let P be a Sylow π-subgroup of G.
Then P is a Hall π-subgroup of G.

Proof. We will do induction on the order of G. If its order is 1, we are done. Assume
that the theorem is true for every group whose order is smaller than G.

Let R := Oπ(G). We will have two cases.

Case 1: R is non-trivial.
Then G/R is a proper quotient group of G. Since R is characteristic in G, we have

R E P . Then P/R is a Sylow π-subgroup of G/R. Also G/R is π-separable, since G
is π-separable. Then by assumption on the inductive step, P/R is a Hall π-subgroup
of G/R. Then [G/R : P/R] = [G : P ] is a π′-number. So P is a Hall π-subgroup of G.

Case 2: R is trivial.
Let S := Oπ′(G). If S is trivial, then the upper π-series of G only contains trivial

group, which contradicts G’s being π-separable and non-trivial. So S is non-trivial.
Then G/S is a proper subgroup of G. Also by the second isomorphism theorem,
PS/S ∼= P/(P ∩ S) = P since P ∩ S = 1. So PS/S is a π-subgroup of G/S. Then
PS/S is contained in a Sylow π-subgroup of G/S, say Q/S, which is a Hall π-subgroup
of G/S by the assumption on the inductive step. Recall that P is a subgroup of Q.
By Corollary 3.4, P 6 P ∗ where P ∗ is a Hall π-subgroup of Q. But P is a Sylow
π-subgroup of Q, thus P = P ∗. So [G : Q] is a π′-number and P is a Hall π-subgroup
of Q. Since [G : Q] is a π′-number, P is a Hall π-subgroup of G.

�

Corollary 4.12. Every π-subgroup of a finite π-separable group is contained in a Hall
π-subgroup of that group.

Theorem 4.13. Let the finite group G be π-separable. Then any two Hall π-subgroups
of G are conjugate in G.

Proof. Let P and Q be two Hall π-subgroups of G. We will use induction on the order
of G. If its order is 1, we are done. Assume that the theorem is true for every group
whose order is smaller than G.

Let R := Oπ(G) and S := Oπ′(G). If R is non-trivial, then by induction P/R and
Q/R are conjugate in G/R and we are done. So we may assume that R = 1. Then S is
non-trivial since G is π-separable. Then by induction PS/S and QS/S are conjugate
in G/S. Then for some g ∈ G, we have gQ 6 PS. Then by Theorem 3.1, P and gQ
are conjugate in PS and hence P and Q are conjugate in G. �
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Corollary 4.12 and Theorem 4.13 are similar to the Sylow theorems. However in this
case, we have these theorems only for finite π-separable groups while the Sylow theo-
rems hold for all finite groups. Therefore one can say that π-groups are a generalization
of p-groups and Hall subgroups are an extension of Sylow p-subgroups.

Note that Theorem 3.5 is actually an immediate consequence of Corollary 4.12 and
Theorem 4.13 because every finite solvable group is π-separable as we proved in Propo-
sition 4.3. Remark that in the language of Hall subgroups, Theorem 3.5 says that for
every π, every π-subgroup of a finite solvable group G is contained in a Hall π-subgroup
of G and all Hall π-subgroups, for any fixed π, of G are conjugate to each other. Now
we investigate if the converse of this statement holds. The following theorem shows
that it holds.

Theorem 4.14. Let G be a finite group and suppose that for every prime p there exists
a Hall p′-subgroup of G. Then G is solvable.

To prove this theorem, we will need Burnside’s pαqβ theorem. We will only state
this theorem without giving a proof because it requires some tools we did not mention
in this project.

Theorem 4.15 (Burnside’s pαqβ theorem, [2]). Every group whose order is of the form
pαqβ is solvable.

Proof of Theorem 4.14 also requires some index calculations. To help us to do this
calculations we have the following lemma.

Lemma 4.16. Let H and K be subgroups of a finite group G whose indices are relatively
prime. Then [G : H ∩K] = [G : H] · [G : K].

Proof. Because ([G : H], [G : K]) = 1, we have G = HK. Therefore,

|G|
|H ∩K|

=
|G| · |HK|
|H| · |K|

= [G : H] · [G : K] · |HK|
|G|

= [G : H] · [G : K].

�

Proof of Theorem 4.14. Assume that the theorem is not true and that G is the minimal
counterexample by order. Let |G| = pl11 · pl22 . . . p

lk
k where pi’s are distinct primes and

li’s are positive integers. If k = 1, then G is a p1-group so it is solvable. If k = 2,
then by Theorem 4.15, G is solvable. So k > 2. Let Gi be a Hall p′i-subgroup of G.
Then, [G : Gi] = plii . Let H := G3 ∩ G4 ∩ . . . ∩ Gk. By Lemma 4.16, [G : H] =
k∏
i=3

plii . So |H| = pl11 p
l2
2 . By Theorem 4.15, H is solvable. Let M be a minimal normal

subgroup of H. Then M is an elementary abelian q-group where q ∈ {p1, p2} (see
[5, Theorem 6.13]). Without loss of generality let q = p1. Similarly, by Lemma 4.16,

[G : H∩G2] =
k∏
i=2

plii , so |H∩G2| = pl11 . So H∩G2 is a Sylow p1-subgroup of H. Hence

M 6 (H ∩ G2) 6 G2. Repeating the same argument, |H ∩ G1| = pl22 . By comparing
the indices, G = (H ∩ G1)G2. Define MG := 〈M g〉. Then MG = MG2 6 G2 < G and
therefore MG is a proper normal subgroup of G. Set N := MG.
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Let K be a Hall p′-subgroup of G for some p ∈ {p1, p2, . . . , pk}. Then K ∩ N is a
Hall p′-subgroup of N and KN/N is a Hall p′-subgroup of G/N . By minimality of G,
we derive that N and G/N are solvable. Thus G is solvable.

�

The set of Gi, which are Hall p′i-subgroups of G, that we introduced in the beginning
of this proof is known as a Sylow system of G.

As we discussed before, as a consequence of Theorem 4.14 and Theorem 3.5 we have
the following result.

Corollary 4.17. Let G be a finite group. G is solvable if and only if it has Hall π-
subgroups for every set of primes π. Moreover, all Hall π-subgroups of G are conjugate
to each other.
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