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Periods and Motives

Definition (Kontsevich, Zagier)
A period is a complex number whose real and imaginary parts are values
of absolutely convergent integrals

/ f(Xl,..., dX1 an,

where f is a rational function with rational coefficients and o C R" is
given by polynomial inequalities with rational coefficients.
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Periods and Motives

Definition (Kontsevich, Zagier)

A period is a complex number whose real and imaginary parts are values
of absolutely convergent integrals

/ f(Xla ey X Xm an»

where f is a rational function with rational coefficients and o C R" is
given by polynomial inequalities with rational coefficients.

Examples
V2= fzng dx, m= fx2+y2§1 dxdy, ((2) = f12t12t220 dT? 1d_tztz,
Iog(2) - 12 %' C(27 1) = flztlztzzrazo dT? 1‘it2t2 1cf?.‘3
» Periods form a subring of C. We will denote the ring of periods by
pef
» P is countable.
>»ZcQcQcPfcc
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Definition
Let k be a subfield of C. A k-variety is a reduced separated scheme of
finite type over k.

Definition (Cohomological definition of periods)

Let X be a smooth Q-variety, Y C X a normal crossing divisor. The
period isomorphism

Hir(X,Y) ®q C — Hg(X,Y;Q) ®g C
induces the period pairing

Hir(X,Y) ® HE(X(C), Y(C): Q) —

w®0»—>/

We call a period of (X, Y) any number in the image of this map.
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Example

Let us consider the pair
(Xa Y) = (]P(%» \ {07 00}7 {17 Q}),

with g € Q\ {0,1}.
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Example

Let us consider the pair

(X,Y) = (Pg\ {0,00}, {1, }),
with g € Q\ {0,1}.

First singular homology of (X(C), Y(C)) = (C*, {1, g}) has a basis
{01,02}, where o7 is a (counterclockwise) circle around 0 with
radius r < min{1,|q|} and o is the straight line from 1 to g.
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Example

Let us consider the pair

(X,Y) = (Pg\ {0,00}, {1, }),

with g € Q\ {0, 1}.

First singular homology of (X(C), Y(C)) = (C*, {1, g}) has a basis
{01,02}, where o7 is a (counterclockwise) circle around 0 with
radius r < min{1,|q|} and o is the straight line from 1 to g.

First de Rham cohomology of (X, Y) = (SpecQ[x,x"1],{1, q}) has

) P T a
a basis {w1,ws}, where w; = &, wy = =
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Example

Let us consider the pair
(X,Y) = (Py\ {0, 00}, {1, q}),

with g € Q\ {0, 1}.

First singular homology of (X(C), Y(C)) = (C*, {1, g}) has a basis
{01,02}, where o7 is a (counterclockwise) circle around 0 with
radius r < min{1,|q|} and o is the straight line from 1 to g.

First de Rham cohomology of (X, Y) = (SpecQ[x,x"1],{1, q}) has

H __ dt __ _dt
a basis {w1,ws}, where w; = &, wy = =

Hence this pair gives the matrix

e [ wr) _ (1 logg
fUIWQ folwl N 0] 2mi

which shows that log of rational numbers are periods.
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Cheking whether two complex numbers are equal or not is not easy. For
example
7V 163 and 3 - log(640320)

both have decimal expensions beginning
40.10916999113251...

but they are not equal.

(e™v183 = 262537412640768743.99999999999925007... is known as the
Ramanujan constant.)
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Conjecture (Period conjecture)

If a period has two integral representations, one can pass between them
using only the following calculus rules.

— Additivity of integral:

where o1 N oy = (.

— Change of variables:

/ w:/f*w
f(o) o

where f is invertible and defined by polynomial equations with

rational coefficients.
— Stokes’ formula:
/ dw = / w.
o do
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The category of mixed motives MM (k) over a field k is a conjectural
Tannakian category, together with a contravariant functor

h: Vary — MM(k) such that any Weil cohomology theory H factors
through h:

Vary H k — Vect
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» Singular cohomology and de Rham cohomology induce functors
fg, far : MM(Q) — Q — Vect.
» Then for any motive M € MM(Q), the period pairing yields a pairing
far(M) @ fg(M)" — C.

> Let P(M) be the subfield of C generated by the image of the pairing.
» The following are equivalent.

— The period conjecture holds.
— ev: Pz = Cis injective.
— Pxz is an integral domain and for any (Nori) motive M,

trdeg[P(M) : Q] = dim Gmot(M),

where Gmet(M) = Aut® Hg(uy is the Galois group of the Tannakian
subcategory (M) of MM(Q) generated by M.
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Nori Motives

Theorem
Let D be a diagram (quiver, directed graph), R be a ring and

T:D— R— Mod

be a (quiver) representation. Then, there is an R-linear abelian category
C(D, T) with representation

T:D—C(D,T)
and a faithful, exact, R-linear functor
fr:C(D, T) = R— Mod
such that T factorises as
T:0 L c(D, T) ™ R~ Mod

and C(D, T) is universal with this property.
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> C(D, T) is called the diagram category.
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> C(D, T) is called the diagram category.
» If D is finite,
C(D, T)=End(T) — Mod.
» In general,
C(D, T) =2 —colimg C(F, T| ),

where F runs through finite full subdiagrams of D, i.e., the objects
of C(D, T) are the objects of C(F, T|F) for some F and the
morphisms are

Morc(p, (X, Y) = lim Morc(r 7,)(XF, YF),

—
F

where Xg is the image of X € C(F', T

£)inC(F, T|.) for FOF.
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> C(D, T) is called the diagram category.
» If D is finite,
C(D, T)=End(T) — Mod.
» In general,
C(D, T) =2 —colimg C(F, T| ),

where F runs through finite full subdiagrams of D, i.e., the objects
of C(D, T) are the objects of C(F, T|F) for some F and the
morphisms are

More(p, (X, Y) = lim Morc(r, 1) (XF, YE),
F
where X is the image of X € C(F', T|.,) in C(F, T|.) for F 2 F'.

> Each object of C(D, T) is a subquotient of a finite direct sum of
objects from {Tp | p € D}.
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> Let X be a k-variety, Y C X be a closed subvariety and i € Z. We
call (X, Y,i) an effective pair.
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> Let X be a k-variety, Y C X be a closed subvariety and i € Z. We
call (X, Y,i) an effective pair.
> Let Pairs®™ be the diagram whose vertices are effective pairs and
edges are the following.
— For any morphism f : X — X’ such that f(Y) C Y’, we have an
edge (X', Y/, i) = (X, Y,i).
— For any chain X O Y D Z of closed subvarieties, an edge
(Y, Z,i) = (X,Y,i+1).
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> Let X be a k-variety, Y C X be a closed subvariety and i € Z. We
call (X, Y,i) an effective pair.

> Let Pairs®™ be the diagram whose vertices are effective pairs and
edges are the following.
— For any morphism f : X — X’ such that f(Y) C Y’, we have an
edge (X', Y/, i) = (X, Y,i).
— For any chain X O Y D Z of closed subvarieties, an edge
(Y, Z,i) = (X,Y,i+1).

» The relative singular cohomology

H* : Pairs® — Z — Mod
(X, Y. i) = H'(X(C), Y(C); Z)

is a representation.
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Let X be a k-variety, Y C X be a closed subvariety and i € Z. We
call (X, Y,i) an effective pair.

Let Pairs®™ be the diagram whose vertices are effective pairs and

edges are the following.
— For any morphism f : X — X’ such that f(Y) C Y’, we have an
edge (X', Y',i) = (X, Y, ).
— For any chain X O Y D Z of closed subvarieties, an edge
(Y, Z,0)) = (X,Y,i+1).

The relative singular cohomology
H* : Pairs* — Z — Mod
(X, Y. i) = H'(X(C), Y(C); Z)

is a representation.

We define the category of effective mixed Nori motives as

MMET (k) = C(Pairs®™™ H*).
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> MM = MM (k) := C(Pairs™, H*).
Pairse" H’ 7 — Mod
& fH*
MMF\If(F)ri
> Hi. (X,Y):=T(X,Y,i)e MM ..
> Hll\lori (X) = Hl,\lori (X,@)
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> MM = MM (k) := C(Pairs™, H*).
Pairse" H’ 7 — Mod
& fH*
MMF\If(F)ri
> Hi. (X,Y):=T(X,Y,i)e MM ..
> Hll\lori (X) = Hl,\lori (X,@)

Definition

1. We call an effective pair (X, Y, i) an effective good pair if
H/(X(C), Y(C);Z) =0 for j # i and H'(X(C), Y(C); Z) is free.

2. An effective good pair is called an effective very good pair if X is
affine, X'\ Y is smooth and either dim(X) =/, dim(Y)=/—1 or
X =Y and dim(X) < i.

3. We denote the full subdiagram of Pairs®® with effective good pairs
by Good®.

4. We denote the full subdiagram of Good* with effective very good
pairs by VGood®".
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Lemma (Nori)

Let X be an affine k-variety of dimension n and Z C X is a Zariski closed
subset with dim(Z) < n. Then there is a Zariski closed subset Y with

Z CY C X anddim(Y) < n such that (X, Y,n) is a good pair.

» By using this lemma iteratively, for any affine variety X of dimension
n, we can find a filtration

D=F 1 XCFRXC..CF, 1 XCFX=X

such that each (FjX, Fj_1X,j) is very good.

» The induced chain complex

= H (FX(C), Fr1X(C); 2) & H* (Fy1 X(C), FX(T); Z) — -+

computes the singular cohomology of X.

Theorem
MMSE = C(Pairs®™ H*), C(Good®™, H*) and C(VGood®", H*) are

Nori —
equvalent.
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» For good pairs (X, Y,i) and (X', Y', '), let
Hiioi (X, Y) @ Hior (X', Y'Y := HIF (X x X', X x Y'UX' X Y)

in the light of the Kiinneth formula.

> MM = C(Good*™, H*) is a tensor category.

> 1(=1) == Hygi (Gm, {1}).

> The category MMpnori = MMpori (k) of mixed Nori motives is
defined as the localization of MM . with respect to 1(—1).

Theorem
MMpori is a Tannakian category with the fiber functor H*.
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» 1(—n) :=1(-1)®", for n € Z.
» M(—n):=M®1(—n), for n € Z and M € MMy -
> H&ori (]P’N) _ 1(—n), ifi= 2.n and N>n>0

0, otherwise.

> If Z is a projective variety of dimension n, then H3?. (Z) = 1(—n).
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> We work with MM g, the category of mixed Nori motives with
rational coefficients (i.e. replace Z — Mod by Q — Mod).

Definition

A motive M € MMeqrig is called pure of weight n € Z if it is a
subquotient of H{ % (Y)(j) for some Y smooth and projective and
j € Z. A motive is called pure if it is a direct sum of pure motives of

some weights.

» 1(—n) is pure of weight 2n.
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> We work with MM g, the category of mixed Nori motives with
rational coefficients (i.e. replace Z — Mod by Q — Mod).

Definition

A motive M € MMeqrig is called pure of weight n € Z if it is a
subquotient of H{ % (Y)(j) for some Y smooth and projective and
j € Z. A motive is called pure if it is a direct sum of pure motives of

some weights.

» 1(—n) is pure of weight 2n.

Theorem

On every motive M € MMpqriq, there is a unique bounded increasing
filtration (W,M)pcz inducing the weight filtration under the Hodge
realization. Moreover, every morphism of Nori motives is strictly
compatible with this filtration.

» We call this filtration weight filtration and denote
gt M = W,M/W,_1 M.

» grV M is pure of weight n.
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Mixed Tate Motives
> A Nori motive M € MMeiq is called a mixed Tate Nori motive if
gri¥M is a direct sum of copies of 1(—n).

> We denote the full subcategory of MMpyqri g containing these
objects by MT Mpnori,g-

» (MT Mnorig, 1(1)) is a mixed Tate category.
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Mixed Tate Motives

> A Nori motive M € MMeiq is called a mixed Tate Nori motive if
gri¥M is a direct sum of copies of 1(—n).

> We denote the full subcategory of MMpyqri g containing these
objects by MT Mpnori,g-

» (MT Mnorig, 1(1)) is a mixed Tate category.

Example

Let B C G,, be such that B = {xy,- - ,x}. We will find the weight
structure of H,{,ori (Gm, B). We have the following exact sequence

0— Hl(\)lori (Gm) — Hl(\)lori (B) — Hl%lori (Gm’ B) - Hl%lori (Gm) —0
—_—— —— ——
1(0) 1(0)®r 1(—1)
Then,
gr(lJ/VHI%Iori (Gfm B) = 1(0)@071)
g2’ Hiori (Gm, B) = 1(~1)

Therefore Hf.,; (Gm, B) is mixed Tate.
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Example
Let B= MyU M, UM, C IP%, where M; are lines in IP% in general
position such that they are not axis lines z; = 0. Then

gr(‘)/VHlilori (B N G?n) 1(0)
grgVHI%Iori (B N G?n) = 1(71)655

where s is the number of intersection of B with {z; =0} U {z, = 0}.
Using the exact sequence

0— Hl%lori (G%n) - Hl%lori (Bmng) - Hl%lori (Ggm BQG%,) - Hl%lori (ng) —0
—— ——

1(—1)®2 1(-2)
we have
gro’ Hiori (G, BN G7,) = 1(0)
gry’ Hiori (G, BN G) = 1(—1)%2
gy Hiori (G2, BN G2,) = 1(-2)

and s —2 € {0,1,2,3,4}. Here 1(—2) is coming from the torus G2, and
1(0) is coming from the triangle defined by B.
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Aomoto Polylogarithms

» There is a generalization of logarithms called polylogarithms which is
defined inductively by

liy(z) = —log(1 — 2)

and J
dlin(z) = lip1(2)%Z,
p4

with £i,(0) = 0.

20/38



Aomoto Polylogarithms

» There is a generalization of logarithms called polylogarithms which is
defined inductively by

liy(z) = —log(1 — 2)

and J
dlin(z) = lip1(2)%Z,
z
with £i,(0) = 0.
» They have the power series expansion

zm

‘eln = —

@)=Y 2

1<m

for |z| < 1.
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Fix some g € Q\ {0,1}. Let z, i =0,1,...,n, be the homogeneous
coordinates on P

Let L; be the hyperplanes defined by z; = 0 and M; be the
hyperlanes defined as My : zg = z;; My - 20 = 21 + 20, M; : zp = zj11
for2<i<n;and M, : gzo = z,.

Let My =M, and L =J L.

Li,(q) is a period of the mixed Tate motive
H“ori (]P)(ED \ La Mq \ (L N Mq))

We will call the configuration (L, M,) as the polylogarithmic
configuration of q.
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» (i is called dilogarithm. lts configuration is given by

M()ZZ():Zl
M :zo=z1+2

M2 . qzp = 2o.

Call D(q) for the triangle given by M;. Then

%@:/ NS
D(q) X Y
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» We call an n-simplex a family of n+ 1 hyperplanes (Lo, ..., L,) of P}.
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» We call an n-simplex a family of n+ 1 hyperplanes (Lo, ..., L,) of P}.

> A pair of simplices (L, M) is said to be admissible if they do not
have a common face.
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» We call an n-simplex a family of n+ 1 hyperplanes (Lo, ..., L,) of P}.

> A pair of simplices (L, M) is said to be admissible if they do not
have a common face.

> Let (L, M) be admissible pair of simplices such that the hyperplanes
of L and M are in general position. Let

wp = dlog(z1/z0) A ...d log(zn/ 2o)

where z; = 0 is a homogeneous equation of L;. Let Ay be the
simplex whose sides are M;. Then

a(L,M) = /AMwL

Hiiori (P \ L, M\ (LN M)).

is a period of
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» We call an n-simplex a family of n+ 1 hyperplanes (Lo, ..., L,) of P}.

> A pair of simplices (L, M) is said to be admissible if they do not
have a common face.

> Let (L, M) be admissible pair of simplices such that the hyperplanes
of L and M are in general position. Let

wp = dlog(z1/z0) A ...d log(zn/ 2o)

where z; = 0 is a homogeneous equation of L;. Let Ay be the
simplex whose sides are M;. Then

a(L,M) = /AMwL

Hiiori (P \ L, M\ (LN M)).

is a period of

> M=Hj, (P"\ L,M\ (LN M))is a mixed Tate motive with

grg‘,fM =1(—n),
gry! M = 1(0).
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Definition
Ao(k) :==Z. For n > 0, define A,(k) as the abelian group generated by
(L; M) where (L, M) is an admissible pair of simplices in P} subject to
the following relations:
1. If the hyperplanes of one of L or M is not in general position (i.e.
degenerate), then (L; M) = 0.

2. Forevery o € 5,,
(oL; M) = (L; o M) = (=1)l°!(L; M)

where oL and oM, are defined by the natural action of S, on a set
indexed by 1, ..., n.

3. For every family of hyperplanes Ly, ..., L,+1 and an n-simplex M,

where [V = (L, ..., [j, ..oy Lny1), and the corresponding relation for
the second component.

4. For every g € PGL,11(k),
(gL: gM) = (L; M).
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As(K) =5 k>
(Lo, L1; Mo, My) — r(Lo, L1, Mo, My)
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As(K) =5 k>
(Lo, L1; Mo, My) — r(Lo, L1, Mo, My)

» The multiplication map p: Ay X Apr — Ap, for n’ +n"” =n, is
defined on the generators in the following way. Let (L', M’) and
(L, M") be two admissible pairs of non-degenerate simplices from
P" and P, respectively. Also let L be a non-degenerate simplex
from P". Identify the affine spaces P\ Ly and
(P \ Ly) x (P""\ LY). Then M’ x M" can be seen in P"\ Ly and
hence in P". Cutting this product into simplices in P” defines an
element in A, which is defined as the product of (L’; M’) and
(LH; MN).

25/38



As(K) =5 k>
(Lo, L1; Mo, My) — r(Lo, L1, Mo, My)

» The multiplication map p: Ay X Apr — Ap, for n’ +n"” =n, is
defined on the generators in the following way. Let (L', M’) and
(L, M") be two admissible pairs of non-degenerate simplices from
P" and P, respectively. Also let L be a non-degenerate simplex
from P". Identify the affine spaces P\ Ly and
(P \ Ly) x (P""\ LY). Then M’ x M" can be seen in P"\ Ly and
hence in P". Cutting this product into simplices in P” defines an
element in A, which is defined as the product of (L’; M’) and
(LH; MN).

> A= @A, is a graded Hopf algebra.
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» Let G be the Galois group of MT Mperig. Then
1-U—-G—>G,—1

is split exact.
» Here, U = SpecR, where R = @ -, R4 is a graded Hopf algebra.
> MT Mhnori g is equivalent to the category of graded R-comodules.
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» Let G be the Galois group of MT Mperig. Then
1-U—-G—>G,—1

is split exact.
» Here, U = SpecR, where R = @ -, R4 is a graded Hopf algebra.
> MT Mhnori g is equivalent to the category of graded R-comodules.

Conjecture (Beilinson)
There is a natural isomorphism of graded Hopf algebras

ARQ = R.
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A Construction of Mixed Tate Motives

» We will consider the motives coming from the following
configurations.

» Fix n e N>0. Let

B= J B,

1<i<m

where all B; are hyperplanes in B that meet x; = ... =x;, =0
properly for all {iy,...,ik} C{1,...,n}.

» We call such B a nice divisor.

» We will be interested in the motives of the form

Hﬁori (Gnma BN Gnm)
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A Construction of Mixed Tate Motives

» We will consider the motives coming from the following
configurations.

» Fix n e N>0. Let

B= J B,

1<i<m

where all B; are hyperplanes in B that meet x; = ... =x;, =0
properly for all {iy,...,ik} C{1,...,n}.

» We call such B a nice divisor.

» We will be interested in the motives of the form

Hﬁori (Gnma BN Gnm)

> H{.; (GI.BNGP) is a mixed Tate motive with

grggHﬁori (Gnm? BN Gnm) = 1(—”).
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> Let

where

Ma = grll_ou(lim Hioy (G, BN G1)) @ 1(n — d)
B

such that the limit is taken over all nice divisors B as in the
beginning of the section.
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> Let

where

Ma = grll_ou(lim Hioy (G, BN G1)) @ 1(n — d)
B

such that the limit is taken over all nice divisors B as in the
beginning of the section.
» In particular,
My = 1(0)

and
My = grg” (im Hiori (G, BNG))).-
B
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» Viewing M as a graded R-comodule, we have a linear map
v:M— R® M. Let v; : M — M; be the restriction map.

> Since My = 1(0) is realized as Z, there is a natural map ¢ : My — Q.
» By composing

hM% RoM 2% R My 9% ReQ 5 R

we have a map h: M — R such that h|y, = ¢.
» This also gives

hlm, - Mo — D R @ M; — R, @ My — R, @ Q &5 R,.
i+j=n
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> Let G, := S, x G}, where 5, is the symmetric group of order n!,
and the action be given by o - (a1,...,a,) = (o(a1),...,0(an))-
» Then G, acts on G, by

(0-a)-x=(-1)lg . (ax)

foroc € S,, a,x € GJ,.
» This action extends on

Mn = gr(\)/V(an H“ori (Gr;m Bn Gr,zn))
B

> Let
R := Ho(Gp; M) = M, /{gx — x| g € Gp,x € M,).
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Proposition
h|m, induces a map ¢, : Rl — R,.
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Proposition
h|m, induces a map ¢, : Rl — R,.

Proof.

» R, is given by the framed objects and the coaction M, = R, ® M,
is given by frames

1(0) = &g’ Hiiori (G BN )
and it corresponds to the periods of gr{’ Hi_; (G2, BN GP,).

» WLOG assume gryV H2 . (G, BN GT) = 1(0).
» Its periods are scalar multiples of
_ [ il

p= VANAAAN .
B X1 Xn

> pis invariant under the action of both S, and G7,.
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» Let Ry =Zand R' =@, -, R}
» Tensor product of motives defines a multiplication R}, ® R;,, — R},
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> Let Ry=Zand R =,>0 Ry
» Tensor product of motives defines a multiplication R}, ® R;,, — R},
Lemma
Assume n’ +n" =n. Let (L'; B') € Ay and (L"; B") € Ayr. Then
(L' B") x (L"; B") =3",(L; Bi), for some (L; Bj) € A,. Assume that
L, L', L" are given by axis hyperplanes. Then,
Hiiori (G B' N GF,) @ il (G5, B" NG) = Hios (G, BNGH),

where B is the nice divisor given by the union of simplices B;.
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> Let Ry=Zand R =,>0 Ry

» Tensor product of motives defines a multiplication R}, ® R;,, — R},

Lemma
Assume n’ +n" =n. Let (L'; B') € Ay and (L"; B") € Ayr. Then
(L' B") x (L"; B") =3",(L; Bi), for some (L; Bj) € A,. Assume that
L, L', L" are given by axis hyperplanes. Then,
Hiiori (GRy, B' NG ® Hieyi (G, B NGY) = Hioy: (G, BN G,

where B is the nice divisor given by the union of simplices B;.

Proof.

o (G B’ NG) @ Hiei (GI B NG,
=Hj i (G (B” NGTYU(B'NG™) x G™)
=H{,; (G7, ( x B"UB' xG" )NG")
=H{oi (G, BNG).

by the definition of multiplication in A.
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Theorem
There is an isomorphism of graded algebras ¢ : R — A.
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Theorem
There is an isomorphism of graded algebras ¢ : R' — A.
Idea of proof.

Let n > 0. Let Z = (2, ..., Z,) be the n-simplex in P" given by

Z; . z; = 0. Define A/, as the abelian group generated by (B) where B is
an n-simplex in P" such that (Z, B) is admissible, subject to the
following relations:

1. If the hyperplanes of B are not in general position, then (B) = 0.

2. For every o € S,,
(eB) = (-1)!(B).

3. For every family of hyperplanes By, ..., Byy1,

S (~1Y(B) = 0.

4. For every g € G,

(gB) = (B),
where the action of G/, is as follows. For g = (g1,...,8n) € G, and
p=(20:21:22:...:2,) €P", let

g'P:(Zoig1211g2221--~1gn2n)-
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Idea of proof, cont'd.
» Then,

Al — A,
(B) — (Z;B).

is an isomorphism.
> We will write an isomorphism R/ — A.
» We will consider the underlying Z-modules of motives.

» We will work in the homological setting. The category of
cohomological motives is isomorphic to the opposite category of
homological motives. We denote by HN° (X, Y) the corresponding
object of HY,,; (X, Y).
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Idea of proof, cont'd.

>

\4

In this case,

My = g (i H" (G5, B11GF)
such that the colimit is taken over all nice divisors B.
By adding any such B some hyperplanes, we can divide it into
"independent” simplices B'.
So, BC |JB'.
This gives grg’ HY.; (G, BNGA) — @ grg HN* (G, B' N G7,).
Define

Ve gry Hiori (G, B'NGH) =1(0) = Z — A,
as ¥gi(1) = (B).

This extends a map
P M, — Al
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Idea of proof, cont'd.
» ¢ : M, — Al. s surjective with kernel (gx — x | g € G,,x € M,,).
» Hence, this gives an isomorphism

~

¢n: R, =M,/{gx—x|g€ Gy,x€M,) = A = A,

» By previous lemma, ¢ = @~ ¢n respects multiplication. Thus ¢ is
an isomorphism of graded algebras.

O
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» The comultiplication on A can be carried to R’. This makes R’ a
Hopf algebra.

> let o =Py, R — R

Conjecture

PvRQ:RReQ—R

is an isomorphism of graded Hopf algebras.
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Thank you!
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