A construction of Mixed Tate Nori Motives

Berkay Kebeci

https://aberkay.github.io/motif.pdf

Outline

- Periods and motives
- Nori motives
- Mixed Tate motives
- Aomoto polylogarithms
- A construction of mixed Tate motives

Periods and Motives

Definition (Kontsevich, Zagier)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals

$$
\int_{\sigma} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

where f is a rational function with rational coefficients and $\sigma \subseteq \mathbb{R}^{n}$ is given by polynomial inequalities with rational coefficients.

Periods and Motives

Definition (Kontsevich, Zagier)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals

$$
\int_{\sigma} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

where f is a rational function with rational coefficients and $\sigma \subseteq \mathbb{R}^{n}$ is given by polynomial inequalities with rational coefficients.

Examples

$\sqrt{2}=\int_{2 x^{2} \leq 1} d x, \quad \pi=\int_{x^{2}+y^{2} \leq 1} d x d y, \quad \zeta(2)=\int_{1 \geq t_{1} \geq t_{2} \geq 0} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{1-t_{2}}$, $\log (2)=\int_{1}^{2} \frac{d x}{x}, \quad \zeta(2,1)=\int_{1 \geq t_{1} \geq t_{2} \geq t_{3} \geq 0} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{1-t_{2}} \frac{d t_{3}}{1-t_{3}}$

Periods and Motives

Definition (Kontsevich, Zagier)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals

$$
\int_{\sigma} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

where f is a rational function with rational coefficients and $\sigma \subseteq \mathbb{R}^{n}$ is given by polynomial inequalities with rational coefficients.

Examples

$\sqrt{2}=\int_{2 x^{2} \leq 1} d x, \quad \pi=\int_{x^{2}+y^{2} \leq 1} d x d y, \quad \zeta(2)=\int_{1 \geq t_{1} \geq t_{2} \geq 0} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{1-t_{2}}$, $\log (2)=\int_{1}^{2} \frac{d x}{x}, \quad \zeta(2,1)=\int_{1 \geq t_{1} \geq t_{2} \geq t_{3} \geq 0} \frac{d t_{1}}{t_{1}} \frac{d t_{2}}{1-t_{2}} \frac{d t_{3}}{1-t_{3}}$

- Periods form a subring of \mathbb{C}. We will denote the ring of periods by \mathcal{P} eff.
$\checkmark \mathcal{P}^{\text {eff }}$ is countable.
$-\mathbb{Z} \subset \mathbb{Q} \subset \overline{\mathbb{Q}} \subset \mathcal{P}^{\text {eff }} \subset \mathbb{C}$.

Definition

Let k be a subfield of \mathbb{C}. A k-variety is a reduced separated scheme of finite type over k.

Definition (Cohomological definition of periods)
Let X be a smooth \mathbb{Q}-variety, $Y \subseteq X$ a normal crossing divisor. The period isomorphism

$$
H_{\mathrm{dR}}^{i}(X, Y) \otimes_{\mathbb{Q}} \mathbb{C} \rightarrow H_{\mathrm{B}}^{i}(X, Y ; \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

induces the period pairing

$$
\begin{aligned}
H_{\mathrm{dR}}^{i}(X, Y) \otimes H_{i}^{\mathrm{B}}(X(\mathbb{C}), Y(\mathbb{C}) ; \mathbb{Q}) & \rightarrow \mathbb{C} \\
\omega \otimes \sigma & \mapsto \int_{\sigma} \omega .
\end{aligned}
$$

We call a period of (X, Y) any number in the image of this map.

Example

Let us consider the pair

$$
(X, Y)=\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0, \infty\},\{1, q\}\right),
$$

with $q \in \mathbb{Q} \backslash\{0,1\}$.

Example

- Let us consider the pair

$$
(X, Y)=\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0, \infty\},\{1, q\}\right),
$$

with $q \in \mathbb{Q} \backslash\{0,1\}$.

- First singular homology of $(X(\mathbb{C}), Y(\mathbb{C}))=\left(\mathbb{C}^{*},\{1, q\}\right)$ has a basis $\left\{\sigma_{1}, \sigma_{2}\right\}$, where σ_{1} is a (counterclockwise) circle around 0 with radius $r<\min \{1,|q|\}$ and σ_{2} is the straight line from 1 to q.

Example

- Let us consider the pair

$$
(X, Y)=\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0, \infty\},\{1, q\}\right),
$$

with $q \in \mathbb{Q} \backslash\{0,1\}$.

- First singular homology of $(X(\mathbb{C}), Y(\mathbb{C}))=\left(\mathbb{C}^{*},\{1, q\}\right)$ has a basis $\left\{\sigma_{1}, \sigma_{2}\right\}$, where σ_{1} is a (counterclockwise) circle around 0 with radius $r<\min \{1,|q|\}$ and σ_{2} is the straight line from 1 to q.
$>$ First de Rham cohomology of $(X, Y)=\left(\operatorname{Spec} \mathbb{Q}\left[x, x^{-1}\right],\{1, q\}\right)$ has a basis $\left\{\omega_{1}, \omega_{2}\right\}$, where $\omega_{1}=\frac{d t}{t}, \omega_{2}=\frac{d t}{q-1}$.

Example

$>$ Let us consider the pair

$$
(X, Y)=\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0, \infty\},\{1, q\}\right)
$$

with $q \in \mathbb{Q} \backslash\{0,1\}$.

- First singular homology of $(X(\mathbb{C}), Y(\mathbb{C}))=\left(\mathbb{C}^{*},\{1, q\}\right)$ has a basis $\left\{\sigma_{1}, \sigma_{2}\right\}$, where σ_{1} is a (counterclockwise) circle around 0 with radius $r<\min \{1,|q|\}$ and σ_{2} is the straight line from 1 to q.
$>$ First de Rham cohomology of $(X, Y)=\left(\operatorname{Spec} \mathbb{Q}\left[x, x^{-1}\right],\{1, q\}\right)$ has a basis $\left\{\omega_{1}, \omega_{2}\right\}$, where $\omega_{1}=\frac{d t}{t}, \omega_{2}=\frac{d t}{q-1}$.
$>$ Hence this pair gives the matrix

$$
\left(\begin{array}{cc}
\int_{\sigma_{2}} \omega_{2} & \int_{\sigma_{2}} \omega_{1} \\
\int_{\sigma_{1}} \omega_{2} & \int_{\sigma_{1}} \omega_{1}
\end{array}\right)=\left(\begin{array}{cc}
1 & \log q \\
0 & 2 \pi \mathrm{i}
\end{array}\right)
$$

which shows that log of rational numbers are periods.

Cheking whether two complex numbers are equal or not is not easy. For example

$$
\pi \sqrt{163} \text { and } 3 \cdot \log (640320)
$$

both have decimal expensions beginning
40.10916999113251...
but they are not equal. $\left(e^{\pi \sqrt{163}}=262537412640768743.99999999999925007 \ldots\right.$ is known as the Ramanujan constant.)

Conjecture (Period conjecture)

If a period has two integral representations, one can pass between them using only the following calculus rules.

- Additivity of integral:

$$
\begin{aligned}
\int_{\sigma} \omega_{1}+\omega_{2} & =\int_{\sigma} \omega_{1}+\int_{\sigma} \omega_{2} \\
\int_{\sigma_{1} \cup \sigma_{2}} \omega & =\int_{\sigma_{1}} \omega+\int_{\sigma_{2}} \omega
\end{aligned}
$$

where $\sigma_{1} \cap \sigma_{2}=\emptyset$.

- Change of variables:

$$
\int_{f(\sigma)} \omega=\int_{\sigma} f^{*} \omega
$$

where f is invertible and defined by polynomial equations with rational coefficients.

- Stokes' formula:

$$
\int_{\sigma} d \omega=\int_{\partial \sigma} \omega .
$$

The category of mixed motives $\mathrm{MM}(k)$ over a field k is a conjectural Tannakian category, together with a contravariant functor $h: \mathrm{Var}_{k} \rightarrow \mathrm{MM}(k)$ such that any Weil cohomology theory H factors through h :

- Singular cohomology and de Rham cohomology induce functors

$$
f_{B}, f_{d R}: \operatorname{MM}(\mathbb{Q}) \rightarrow \mathbb{Q}-\text { Vect } .
$$

- Then for any motive $M \in \mathrm{MM}(\mathbb{Q})$, the period pairing yields a pairing

$$
f_{d R}(M) \otimes f_{B}(M)^{\vee} \rightarrow \mathbb{C} .
$$

$>$ Let $\mathcal{P}(M)$ be the subfield of \mathbb{C} generated by the image of the pairing.

- The following are equivalent.
- The period conjecture holds.
- ev: $\mathcal{P}_{\mathrm{KZ}} \rightarrow \mathbb{C}$ is injective.
- $\mathcal{P}_{\mathrm{Kz}}$ is an integral domain and for any (Nori) motive M,

$$
\operatorname{trdeg}[\mathcal{P}(M): \mathbb{Q}]=\operatorname{dim} G_{\operatorname{mot}}(M),
$$

where $G_{\text {mot }}(M)=$ Aut ${ }^{\otimes} H_{B \mid\langle M\rangle}$ is the Galois group of the Tannakian subcategory $\langle M\rangle$ of $M M(\mathbb{Q})$ generated by M.

Nori Motives

Theorem
Let D be a diagram (quiver, directed graph), R be a ring and

$$
T: D \rightarrow R-\operatorname{Mod}
$$

be a (quiver) representation. Then, there is an R-linear abelian category $\mathcal{C}(D, T)$ with representation

$$
\tilde{T}: D \rightarrow \mathcal{C}(D, T)
$$

and a faithful, exact, R-linear functor

$$
f_{T}: \mathcal{C}(D, T) \rightarrow R-\operatorname{Mod}
$$

such that T factorises as

$$
T: D \xrightarrow{\tilde{T}} \mathcal{C}(D, T) \xrightarrow{f_{T}} R-\operatorname{Mod}
$$

and $\mathcal{C}(D, T)$ is universal with this property.

- $\mathcal{C}(D, T)$ is called the diagram category.
- $\mathcal{C}(D, T)$ is called the diagram category.
- If D is finite,

$$
\mathcal{C}(D, T)=\operatorname{End}(T)-\operatorname{Mod} .
$$

- In general,

$$
\mathcal{C}(D, T)=2-\operatorname{colim}_{F} \mathcal{C}\left(F,\left.T\right|_{F}\right),
$$

where F runs through finite full subdiagrams of D, i.e., the objects of $\mathcal{C}(D, T)$ are the objects of $\mathcal{C}\left(F,\left.T\right|_{F}\right)$ for some F and the morphisms are

$$
\operatorname{Mor}_{\mathcal{C}(D, T)}(X, Y)=\underset{F}{\lim _{P}} \operatorname{Mor}_{\mathcal{C}\left(F,\left.T\right|_{F}\right)}\left(X_{F}, Y_{F}\right),
$$

where X_{F} is the image of $X \in \mathcal{C}\left(F^{\prime},\left.T\right|_{F^{\prime}}\right)$ in $\mathcal{C}\left(F,\left.T\right|_{F}\right)$ for $F \supseteq F^{\prime}$.

- $\mathcal{C}(D, T)$ is called the diagram category.
- If D is finite,

$$
\mathcal{C}(D, T)=\operatorname{End}(T)-M o d .
$$

- In general,

$$
\mathcal{C}(D, T)=2-\operatorname{colim}_{F} \mathcal{C}\left(F,\left.T\right|_{F}\right),
$$

where F runs through finite full subdiagrams of D, i.e., the objects of $\mathcal{C}(D, T)$ are the objects of $\mathcal{C}\left(F,\left.T\right|_{F}\right)$ for some F and the morphisms are

$$
\operatorname{Mor}_{\mathcal{C}(D, T)}(X, Y)=\underset{F}{\lim } \operatorname{Mor}_{\mathcal{C}\left(F,\left.T\right|_{F}\right)}\left(X_{F}, Y_{F}\right),
$$

where X_{F} is the image of $X \in \mathcal{C}\left(F^{\prime},\left.T\right|_{F^{\prime}}\right)$ in $\mathcal{C}\left(F,\left.T\right|_{F}\right)$ for $F \supseteq F^{\prime}$.

- Each object of $\mathcal{C}(D, T)$ is a subquotient of a finite direct sum of objects from $\{\tilde{T} p \mid p \in D\}$.
- Let X be a k-variety, $Y \subseteq X$ be a closed subvariety and $i \in \mathbb{Z}$. We call (X, Y, i) an effective pair.
- Let X be a k-variety, $Y \subseteq X$ be a closed subvariety and $i \in \mathbb{Z}$. We call (X, Y, i) an effective pair.
- Let Pairs ${ }^{\text {eff }}$ be the diagram whose vertices are effective pairs and edges are the following.
- For any morphism $f: X \rightarrow X^{\prime}$ such that $f(Y) \subseteq Y^{\prime}$, we have an edge $\left(X^{\prime}, Y^{\prime}, i\right) \rightarrow(X, Y, i)$.
- For any chain $X \supseteq Y \supseteq Z$ of closed subvarieties, an edge $(Y, Z, i) \rightarrow(X, Y, i+1)$.
- Let X be a k-variety, $Y \subseteq X$ be a closed subvariety and $i \in \mathbb{Z}$. We call (X, Y, i) an effective pair.
- Let Pairs ${ }^{\text {eff }}$ be the diagram whose vertices are effective pairs and edges are the following.
- For any morphism $f: X \rightarrow X^{\prime}$ such that $f(Y) \subseteq Y^{\prime}$, we have an edge $\left(X^{\prime}, Y^{\prime}, i\right) \rightarrow(X, Y, i)$.
- For any chain $X \supseteq Y \supseteq Z$ of closed subvarieties, an edge $(Y, Z, i) \rightarrow(X, Y, i+1)$.
- The relative singular cohomology

$$
\begin{aligned}
H^{*} & : \text { Pairs }{ }^{\text {eff }} \rightarrow \mathbb{Z}-\text { Mod } \\
(X, Y, i) & \mapsto H^{i}(X(\mathbb{C}), Y(\mathbb{C}) ; \mathbb{Z})
\end{aligned}
$$

is a representation.

- Let X be a k-variety, $Y \subseteq X$ be a closed subvariety and $i \in \mathbb{Z}$. We call (X, Y, i) an effective pair.
- Let Pairs ${ }^{\text {eff }}$ be the diagram whose vertices are effective pairs and edges are the following.
- For any morphism $f: X \rightarrow X^{\prime}$ such that $f(Y) \subseteq Y^{\prime}$, we have an edge $\left(X^{\prime}, Y^{\prime}, i\right) \rightarrow(X, Y, i)$.
- For any chain $X \supseteq Y \supseteq Z$ of closed subvarieties, an edge $(Y, Z, i) \rightarrow(X, Y, i+1)$.
- The relative singular cohomology

$$
\begin{aligned}
H^{*}: & \text { Pairs }{ }^{\text {eff }} \rightarrow \mathbb{Z}-\text { Mod } \\
(X, Y, i) & \mapsto H^{i}(X(\mathbb{C}), Y(\mathbb{C}) ; \mathbb{Z})
\end{aligned}
$$

is a representation.

- We define the category of effective mixed Nori motives as

$$
\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}(k):=\mathcal{C}\left(\text { Pairs }^{\text {eff }}, H^{*}\right) .
$$

$>\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}:=\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}(k):=\mathcal{C}\left(\right.$ Pairs $\left.^{\text {eff }}, H^{*}\right)$.

- $H_{\text {Nori }}^{i}(X, Y):=\tilde{T}(X, Y, i) \in \mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}$
- $H_{\text {Nori }}^{i}(X):=H_{\text {Nori }}^{i}(X, \emptyset)$.
- $\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}:=\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}(k):=\mathcal{C}\left(\right.$ Pairs $\left.^{\text {eff }}, H^{*}\right)$.

$>H_{\text {Nori }}^{i}(X, Y):=\tilde{T}(X, Y, i) \in \mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}$
- $H_{\text {Nori }}^{i}(X):=H_{\text {Nori }}^{i}(X, \emptyset)$.

Definition

1. We call an effective pair (X, Y, i) an effective good pair if $H^{j}(X(\mathbb{C}), Y(\mathbb{C}) ; \mathbb{Z})=0$ for $j \neq i$ and $H^{i}(X(\mathbb{C}), Y(\mathbb{C}) ; \mathbb{Z})$ is free.
2. An effective good pair is called an effective very good pair if X is affine, $X \backslash Y$ is smooth and either $\operatorname{dim}(X)=i, \operatorname{dim}(Y)=i-1$ or $X=Y$ and $\operatorname{dim}(X)<i$.
3. We denote the full subdiagram of Pairs ${ }^{\text {eff }}$ with effective good pairs by Good ${ }^{\text {eff }}$.
4. We denote the full subdiagram of Good ${ }^{\text {eff }}$ with effective very good pairs by VGood ${ }^{\text {eff }}$.

Lemma (Nori)

Let X be an affine k-variety of dimension n and $Z \subseteq X$ is a Zariski closed subset with $\operatorname{dim}(Z)<n$. Then there is a Zariski closed subset Y with
$Z \subseteq Y \subseteq X$ and $\operatorname{dim}(Y)<n$ such that (X, Y, n) is a good pair.

- By using this lemma iteratively, for any affine variety X of dimension n, we can find a filtration

$$
\emptyset=F_{-1} X \subset F_{0} X \subset \ldots \subset F_{n-1} X \subset F_{n} X=X
$$

such that each $\left(F_{j} X, F_{j-1} X, j\right)$ is very good.

- The induced chain complex

$$
\cdots \rightarrow H^{i}\left(F_{i} X(\mathbb{C}), F_{i-1} X(\mathbb{C}) ; \mathbb{Z}\right) \xrightarrow{\delta_{i}} H^{i+1}\left(F_{i+1} X(\mathbb{C}), F_{i} X(\mathbb{C}) ; \mathbb{Z}\right) \rightarrow \cdots
$$

computes the singular cohomology of X.
Theorem
$\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}=\mathcal{C}\left(\right.$ Pairs $\left.{ }^{\text {eff }}, H^{*}\right), \mathcal{C}\left(\right.$ Good $\left.^{\text {eff }}, H^{*}\right)$ and $\mathcal{C}\left(\right.$ VGood $\left.{ }^{\text {eff }}, H^{*}\right)$ are equvalent.

- For good pairs (X, Y, i) and $\left(X^{\prime}, Y^{\prime}, i^{\prime}\right)$, let

$$
H_{\text {Nori }}^{i}(X, Y) \otimes H_{\text {Nori }}^{i}\left(X^{\prime}, Y^{\prime}\right):=H_{\text {Nori }}^{i+i^{\prime}}\left(X \times X^{\prime}, X \times Y^{\prime} \cup X^{\prime} \times Y\right)
$$

in the light of the Künneth formula.

- $\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}=\mathcal{C}\left(\right.$ Good $\left.^{\text {eff }}, H^{*}\right)$ is a tensor category.
> $\mathbf{1}(-1):=H_{\text {Nori }}^{1}\left(\mathbb{G}_{m},\{1\}\right)$.
- The category $\mathcal{M M}_{\text {Nori }}:=\mathcal{M} \mathcal{M}_{\text {Nori }}(k)$ of mixed Nori motives is defined as the localization of $\mathcal{M} \mathcal{M}_{\text {Nori }}^{\text {eff }}$ with respect to $\mathbf{1}(-1)$.
Theorem
$\mathcal{M} \mathcal{M}_{\text {Nori }}$ is a Tannakian category with the fiber functor H^{*}.
> $\mathbf{1}(-n):=\mathbf{1}(-1)^{\otimes n}$, for $n \in \mathbb{Z}$.
$>M(-n):=M \otimes \mathbf{1}(-n)$, for $n \in \mathbb{Z}$ and $M \in \mathcal{M} \mathcal{M}_{\text {Nori }}$.
- $H_{\text {Nori }}^{i}\left(\mathbb{P}^{N}\right)= \begin{cases}1(-n), & \text { if } i=2 n \text { and } N \geq n \geq 0 \\ 0, & \text { otherwise } .\end{cases}$
- If Z is a projective variety of dimension n, then $H_{\text {Nori }}^{2 n}(Z)=\mathbf{1}(-n)$.
- We work with $\mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$, the category of mixed Nori motives with rational coefficients (i.e. replace \mathbb{Z} - Mod by \mathbb{Q} - Mod).

Definition

A motive $M \in \mathcal{M} \mathcal{M}_{\text {Nori, }, \mathbb{Q}}$ is called pure of weight $n \in \mathbb{Z}$ if it is a subquotient of $H_{\text {Nori }}^{n+2 j}(Y)(j)$ for some Y smooth and projective and $j \in \mathbb{Z}$. A motive is called pure if it is a direct sum of pure motives of some weights.

- $\mathbf{1}(-n)$ is pure of weight $2 n$.
- We work with $\mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$, the category of mixed Nori motives with rational coefficients (i.e. replace \mathbb{Z} - Mod by \mathbb{Q} - Mod).

Definition

A motive $M \in \mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ is called pure of weight $n \in \mathbb{Z}$ if it is a subquotient of $H_{\text {Nori }}^{n+2 j}(Y)(j)$ for some Y smooth and projective and $j \in \mathbb{Z}$. A motive is called pure if it is a direct sum of pure motives of some weights.
-1 $(-n)$ is pure of weight $2 n$.

Theorem

On every motive $M \in \mathcal{M} \mathcal{M}_{\text {Nori; } \mathbb{Q}}$, there is a unique bounded increasing filtration $\left(W_{n} M\right)_{n \in \mathbb{Z}}$ inducing the weight filtration under the Hodge realization. Moreover, every morphism of Nori motives is strictly compatible with this filtration.

- We call this filtration weight filtration and denote

$$
\operatorname{gr}_{n}^{W} M:=W_{n} M / W_{n-1} M .
$$

$>\operatorname{gr}{ }_{n}^{W} M$ is pure of weight n.

Mixed Tate Motives

- A Nori motive $M \in \mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ is called a mixed Tate Nori motive if $\operatorname{gr}_{2 n}^{W} M$ is a direct sum of copies of $1(-n)$.
- We denote the full subcategory of $\mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ containing these objects by $\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, }, ~}$.
- $\left(\mathcal{M} \mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}, \mathbf{1}(1)\right)$ is a mixed Tate category.

Mixed Tate Motives

- A Nori motive $M \in \mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ is called a mixed Tate Nori motive if $\operatorname{gr}_{2 n}^{W} M$ is a direct sum of copies of $1(-n)$.
- We denote the full subcategory of $\mathcal{M M}_{\text {Nori, } \mathbb{Q}}$ containing these objects by $\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, }, \mathbb{Q}}$.
- $\left(\mathcal{M} \mathcal{M} \mathcal{M}_{\text {Nori, } \mathbb{Q}}, \mathbf{1}(1)\right)$ is a mixed Tate category.

Example

Let $B \subseteq \mathbb{G}_{m}$ be such that $B=\left\{x_{1}, \cdots, x_{r}\right\}$. We will find the weight structure of $H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}, B\right)$. We have the following exact sequence

$$
0 \rightarrow \underbrace{H_{\text {Nori }}^{0}\left(\mathbb{G}_{m}\right)}_{\mathbf{1}(0)} \rightarrow \underbrace{H_{\text {Nori }}^{0}(B)}_{\mathbf{1}(0)^{\oplus r}} \rightarrow H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}, B\right) \rightarrow \underbrace{H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}\right)}_{\mathbf{1}(-1)} \rightarrow 0
$$

Then,

$$
\begin{aligned}
& \operatorname{gr}_{0}^{W} H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}, B\right)=\mathbf{1}(0)^{\oplus(r-1)} \\
& \operatorname{gr}_{2}^{W} H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}, B\right)=\mathbf{1}(-1)
\end{aligned}
$$

Therefore $H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}, B\right)$ is mixed Tate.

Example

Let $B=M_{0} \cup M_{1} \cup M_{2} \subseteq \mathbb{P}_{\mathbb{C}}^{2}$, where M_{i} are lines in $\mathbb{P}_{\mathbb{C}}^{2}$ in general position such that they are not axis lines $z_{i}=0$. Then

$$
\begin{aligned}
& \operatorname{gr}_{0}^{W} H_{\text {Nori }}^{1}\left(B \cap \mathbb{G}_{m}^{2}\right)=\mathbf{1}(0) \\
& \operatorname{gr}_{2}^{W} H_{\text {Nori }}^{1}\left(B \cap \mathbb{G}_{m}^{2}\right)=\mathbf{1}(-1)^{\oplus s}
\end{aligned}
$$

where s is the number of intersection of B with $\left\{z_{1}=0\right\} \cup\left\{z_{2}=0\right\}$. Using the exact sequence
$0 \rightarrow \underbrace{H_{\text {Nori }}^{1}\left(\mathbb{G}_{m}^{2}\right)}_{1(-1) \oplus^{2}} \rightarrow H_{\text {Nori }}^{1}\left(B \cap \mathbb{G}_{m}^{2}\right) \rightarrow H_{\text {Nori }}^{2}\left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2}\right) \rightarrow \underbrace{H_{\text {Nori }}^{2}\left(\mathbb{G}_{m}^{2}\right)}_{1(-2)} \rightarrow 0$
we have

$$
\begin{aligned}
& \operatorname{gr}_{0}^{W} H_{\text {Nori }}^{2}\left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2}\right)=\mathbf{1}(0) \\
& \operatorname{gr}_{2}^{W} H_{\text {Nori }}^{2}\left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2}\right)=\mathbf{1}(-1)^{\oplus s-2} \\
& \operatorname{gr}_{4}^{W} H_{\text {Nori }}^{2}\left(\mathbb{G}_{m}^{2}, B \cap \mathbb{G}_{m}^{2}\right)=\mathbf{1}(-2)
\end{aligned}
$$

and $s-2 \in\{0,1,2,3,4\}$. Here $\mathbf{1}(-2)$ is coming from the torus \mathbb{G}_{m}^{2} and $\mathbf{1}(0)$ is coming from the triangle defined by B.

Aomoto Polylogarithms

- There is a generalization of logarithms called polylogarithms which is defined inductively by

$$
\ell i_{1}(z)=-\log (1-z)
$$

and

$$
d \ell i_{n}(z)=\ell i_{n-1}(z) \frac{d z}{z},
$$

with $\ell i_{n}(0)=0$.

Aomoto Polylogarithms

- There is a generalization of logarithms called polylogarithms which is defined inductively by

$$
\ell i_{1}(z)=-\log (1-z)
$$

and

$$
d \ell i_{n}(z)=\ell i_{n-1}(z) \frac{d z}{z}
$$

with $\ell i_{n}(0)=0$.

- They have the power series expansion

$$
\ell i_{n}(z)=\sum_{1 \leq m} \frac{z^{m}}{m^{n}},
$$

for $|z|<1$.

- Fix some $q \in \mathbb{Q} \backslash\{0,1\}$. Let $z_{i}, i=0,1, \ldots, n$, be the homogeneous coordinates on $\mathbb{P}_{\mathbb{Q}}^{n}$.
\checkmark Let L_{i} be the hyperplanes defined by $z_{i}=0$ and M_{i} be the hyperlanes defined as $M_{0}: z_{0}=z_{1} ; M_{1}: z_{0}=z_{1}+z_{2} ; M_{i}: z_{i}=z_{i+1}$ for $2 \leq i<n$; and $M_{n}: q z_{0}=z_{n}$.
$>$ Let $M_{q}=\bigcup M_{i}$ and $L=\bigcup L_{i}$.
- $\ell i_{n}(q)$ is a period of the mixed Tate motive

$$
H_{\text {Nori }}^{n}\left(\mathbb{P}_{\mathbb{Q}}^{n} \backslash L, M_{q} \backslash\left(L \cap M_{q}\right)\right) .
$$

- We will call the configuration (L, M_{q}) as the polylogarithmic configuration of q.
$\downarrow \ell i_{2}$ is called dilogarithm. Its configuration is given by

$$
\begin{aligned}
& M_{0}: z_{0}=z_{1} \\
& M_{1}: z_{0}=z_{1}+z_{2} \\
& M_{2}: q z_{0}=z_{2} .
\end{aligned}
$$

Call $\mathcal{D}(q)$ for the triangle given by M_{i}. Then

$$
\ell i_{2}(q)=\int_{\mathcal{D}(q)} \frac{d x}{x} \wedge \frac{d y}{y} .
$$

We call an n-simplex a family of $n+1$ hyperplanes $\left(L_{0}, \ldots, L_{n}\right)$ of \mathbb{P}_{k}^{n}.

- We call an n-simplex a family of $n+1$ hyperplanes $\left(L_{0}, \ldots, L_{n}\right)$ of \mathbb{P}_{k}^{n}.
- A pair of simplices (L, M) is said to be admissible if they do not have a common face.
- We call an n-simplex a family of $n+1$ hyperplanes $\left(L_{0}, \ldots, L_{n}\right)$ of \mathbb{P}_{k}^{n}.
- A pair of simplices (L, M) is said to be admissible if they do not have a common face.
- Let (L, M) be admissible pair of simplices such that the hyperplanes of L and M are in general position. Let

$$
\omega_{L}=d \log \left(z_{1} / z_{0}\right) \wedge \ldots d \log \left(z_{n} / z_{0}\right)
$$

where $z_{i}=0$ is a homogeneous equation of L_{i}. Let Δ_{M} be the simplex whose sides are M_{i}. Then

$$
a(L, M)=\int_{\Delta_{M}} \omega_{L}
$$

is a period of

$$
H_{\text {Nori }}^{n}\left(\mathbb{P}^{n} \backslash L, M \backslash(L \cap M)\right) .
$$

- We call an n -simplex a family of $n+1$ hyperplanes $\left(L_{0}, \ldots, L_{n}\right)$ of \mathbb{P}_{k}^{n}.
- A pair of simplices (L, M) is said to be admissible if they do not have a common face.
- Let (L, M) be admissible pair of simplices such that the hyperplanes of L and M are in general position. Let

$$
\omega_{L}=d \log \left(z_{1} / z_{0}\right) \wedge \ldots d \log \left(z_{n} / z_{0}\right)
$$

where $z_{i}=0$ is a homogeneous equation of L_{i}. Let Δ_{M} be the simplex whose sides are M_{i}. Then

$$
a(L, M)=\int_{\Delta_{M}} \omega_{L}
$$

is a period of

$$
H_{\text {Nori }}^{n}\left(\mathbb{P}^{n} \backslash L, M \backslash(L \cap M)\right) .
$$

- $M=H_{\text {Nori }}^{n}\left(\mathbb{P}^{n} \backslash L, M \backslash(L \cap M)\right)$ is a mixed Tate motive with

$$
\begin{aligned}
& \operatorname{gr}_{2 n}^{w} M=\mathbf{1}(-n), \\
& \operatorname{gr}_{0}^{w} M=\mathbf{1}(0) .
\end{aligned}
$$

Definition

$A_{0}(k):=\mathbb{Z}$. For $n>0$, define $A_{n}(k)$ as the abelian group generated by ($L ; M$) where (L, M) is an admissible pair of simplices in \mathbb{P}_{k}^{n} subject to the following relations:

1. If the hyperplanes of one of L or M is not in general position (i.e. degenerate), then $(L ; M)=0$.
2. For every $\sigma \in S_{n}$,

$$
(\sigma L ; M)=(L ; \sigma M)=(-1)^{|\sigma|}(L ; M)
$$

where σL and σM, are defined by the natural action of S_{n} on a set indexed by $1, \ldots, n$.
3. For every family of hyperplanes L_{0}, \ldots, L_{n+1} and an n-simplex M,

$$
\sum(-1)^{j}(\hat{L} ; M)=0,
$$

where $\hat{L}^{j}=\left(L_{0}, \ldots, \hat{L}_{j}, \ldots, L_{n+1}\right)$, and the corresponding relation for the second component.
4. For every $g \in P G L_{n+1}(k)$,

$$
(g L ; g M)=(L ; M) .
$$

$$
\begin{aligned}
A_{1}(k) & \xrightarrow{\rightarrow} k^{\times} \\
\left(L_{0}, L_{1} ; M_{0}, M_{1}\right) & \mapsto r\left(L_{0}, L_{1}, M_{0}, M_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
A_{1}(k) & \xrightarrow{\sim} k^{\times} \\
\left(L_{0}, L_{1} ; M_{0}, M_{1}\right) & \mapsto r\left(L_{0}, L_{1}, M_{0}, M_{1}\right)
\end{aligned}
$$

$>$ The multiplication map $\mu: A_{n^{\prime}} \times A_{n^{\prime \prime}} \rightarrow A_{n}$, for $n^{\prime}+n^{\prime \prime}=n$, is defined on the generators in the following way. Let $\left(L^{\prime}, M^{\prime}\right)$ and ($L^{\prime \prime}, M^{\prime \prime}$) be two admissible pairs of non-degenerate simplices from $\mathbb{P}^{n^{\prime}}$ and $\mathbb{P}^{n^{\prime \prime}}$, respectively. Also let L be a non-degenerate simplex from \mathbb{P}^{n}. Identify the affine spaces $\mathbb{P}^{n} \backslash L_{0}$ and $\left(\mathbb{P}^{n^{\prime}} \backslash L_{0}^{\prime}\right) \times\left(\mathbb{P}^{n^{\prime \prime}} \backslash L_{0}^{\prime \prime}\right)$. Then $M^{\prime} \times M^{\prime \prime}$ can be seen in $\mathbb{P}^{n} \backslash L_{0}$ and hence in \mathbb{P}^{n}. Cutting this product into simplices in \mathbb{P}^{n} defines an element in A_{n} which is defined as the product of $\left(L^{\prime} ; M^{\prime}\right)$ and ($L^{\prime \prime} ; M^{\prime \prime}$).

$$
\begin{aligned}
A_{1}(k) & \xrightarrow{\sim} k^{\times} \\
\left(L_{0}, L_{1} ; M_{0}, M_{1}\right) & \mapsto r\left(L_{0}, L_{1}, M_{0}, M_{1}\right)
\end{aligned}
$$

$>$ The multiplication map $\mu: A_{n^{\prime}} \times A_{n^{\prime \prime}} \rightarrow A_{n}$, for $n^{\prime}+n^{\prime \prime}=n$, is defined on the generators in the following way. Let (L^{\prime}, M^{\prime}) and ($L^{\prime \prime}, M^{\prime \prime}$) be two admissible pairs of non-degenerate simplices from $\mathbb{P}^{n^{\prime}}$ and $\mathbb{P}^{n^{\prime \prime}}$, respectively. Also let L be a non-degenerate simplex from \mathbb{P}^{n}. Identify the affine spaces $\mathbb{P}^{n} \backslash L_{0}$ and $\left(\mathbb{P}^{n^{\prime}} \backslash L_{0}^{\prime}\right) \times\left(\mathbb{P}^{n^{\prime \prime}} \backslash L_{0}^{\prime \prime}\right)$. Then $M^{\prime} \times M^{\prime \prime}$ can be seen in $\mathbb{P}^{n} \backslash L_{0}$ and hence in \mathbb{P}^{n}. Cutting this product into simplices in \mathbb{P}^{n} defines an element in A_{n} which is defined as the product of $\left(L^{\prime} ; M^{\prime}\right)$ and ($L^{\prime \prime} ; M^{\prime \prime}$).
$-A=\oplus A_{n}$ is a graded Hopf algebra.

- Let G be the Galois group of $\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$. Then

$$
1 \rightarrow U \rightarrow G \rightarrow \mathbb{G}_{m} \rightarrow 1
$$

is split exact.

- Here, $U=$ Spec R, where $R=\bigoplus_{d \geq 0} R_{d}$ is a graded Hopf algebra.
$>\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ is equivalent to the category of graded R-comodules.
- Let G be the Galois group of $\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$. Then

$$
1 \rightarrow U \rightarrow G \rightarrow \mathbb{G}_{m} \rightarrow 1
$$

is split exact.

- Here, $U=\operatorname{Spec} R$, where $R=\bigoplus_{d \geq 0} R_{d}$ is a graded Hopf algebra.
$>\mathcal{M} \mathcal{T} \mathcal{M}_{\text {Nori, } \mathbb{Q}}$ is equivalent to the category of graded R-comodules.
Conjecture (Beilinson)
There is a natural isomorphism of graded Hopf algebras

$$
A \otimes \mathbb{Q} \xrightarrow{\sim} R .
$$

A Construction of Mixed Tate Motives

- We will consider the motives coming from the following configurations.
- Fix $n \in \mathbb{N}^{>0}$. Let

$$
B=\bigcup_{1 \leq i \leq m} B_{i},
$$

where all B_{i} are hyperplanes in B that meet $x_{i_{1}}=\ldots=x_{i_{k}}=0$ properly for all $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$.

- We call such B a nice divisor.
- We will be interested in the motives of the form

$$
H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right) .
$$

A Construction of Mixed Tate Motives

- We will consider the motives coming from the following configurations.
- Fix $n \in \mathbb{N}^{>0}$. Let

$$
B=\bigcup_{1 \leq i \leq m} B_{i},
$$

where all B_{i} are hyperplanes in B that meet $x_{i_{1}}=\ldots=x_{i_{k}}=0$ properly for all $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$.

- We call such B a nice divisor.
- We will be interested in the motives of the form

$$
H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right) .
$$

- $H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)$ is a mixed Tate motive with

$$
\operatorname{gr}_{2 n}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)=\mathbf{1}(-n) .
$$

- Let

$$
M=\bigoplus_{d \geq 0} M_{d}
$$

where

$$
M_{d}=\operatorname{gr} r_{2 n-2 d}^{W}\left(\varliminf_{B}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)\right) \otimes \mathbf{1}(n-d)
$$

such that the limit is taken over all nice divisors B as in the beginning of the section.

- Let

$$
M=\bigoplus_{d \geq 0} M_{d}
$$

where

$$
M_{d}=\operatorname{gr} r_{2 n-2 d}^{W}\left({\underset{\mathrm{lim}}{B}}^{l_{\text {Nori }}}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)\right) \otimes \mathbf{1}(n-d)
$$

such that the limit is taken over all nice divisors B as in the beginning of the section.

- In particular,

$$
M_{0}=\mathbf{1}(0)
$$

and

$$
M_{n}=\operatorname{gr}_{0}^{W}\left({\underset{B}{\mathrm{l}}}_{\mathrm{l}} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)\right) .
$$

- Viewing M as a graded R-comodule, we have a linear map $\nu: M \rightarrow R \otimes M$. Let $\gamma_{i}: M \rightarrow M_{i}$ be the restriction map.
\downarrow Since $M_{0}=\mathbf{1}(0)$ is realized as \mathbb{Z}, there is a natural map $\ell: M_{0} \rightarrow \mathbb{Q}$.
- By composing

$$
h: M \xrightarrow{\nu} R \otimes M \xrightarrow{\mathrm{id} R \otimes \gamma_{0}} R \otimes M_{0} \xrightarrow{\mathrm{id} R \otimes \ell} R \otimes \mathbb{Q} \xrightarrow{\sim} R
$$

we have a map $h: M \rightarrow R$ such that $\left.h\right|_{M_{0}}=\ell$.

- This also gives

$$
\left.h\right|_{M_{n}}: M_{n} \rightarrow \bigoplus_{i+j=n} R_{i} \otimes M_{j} \rightarrow R_{n} \otimes M_{0} \rightarrow R_{n} \otimes \mathbb{Q} \xrightarrow{\sim} R_{n}
$$

- Let $G_{n}:=S_{n} \ltimes \mathbb{G}_{m}^{n}$, where S_{n} is the symmetric group of order $n!$, and the action be given by $\sigma \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)\right)$.
- Then G_{n} acts on \mathbb{G}_{m}^{n} by

$$
(\sigma \cdot a) \cdot x=(-1)^{|\sigma|} \sigma \cdot(a x)
$$

for $\sigma \in S_{n}, a, x \in \mathbb{G}_{m}^{n}$.

- This action extends on

$$
M_{n}=\operatorname{gr}_{0}^{W}\left({\underset{B}{B}}^{\left(\mathrm{l}_{\text {Nori }}\right.} H_{m}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)\right) .
$$

- Let

$$
R_{n}^{\prime}:=H_{0}\left(G_{n} ; M_{n}\right)=M_{n} /\left\langle g x-x \mid g \in G_{n}, x \in M_{n}\right\rangle .
$$

Proposition

$\left.h\right|_{M_{n}}$ induces a map $\varphi_{n}: R_{n}^{\prime} \rightarrow R_{n}$.

Proposition

$\left.h\right|_{M_{n}}$ induces a map $\varphi_{n}: R_{n}^{\prime} \rightarrow R_{n}$.

Proof.

- R_{n} is given by the framed objects and the coaction $M_{n} \rightarrow R_{n} \otimes M_{n}$ is given by frames

$$
\mathbf{1}(0) \rightarrow \operatorname{gr}_{0}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)
$$

and it corresponds to the periods of $\operatorname{gr}_{0}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)$.
\downarrow WLOG assume $\operatorname{gr}_{0}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)=\mathbf{1}(0)$.

- Its periods are scalar multiples of

$$
\rho=\int_{B} \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}} .
$$

$\triangleright \rho$ is invariant under the action of both S_{n} and \mathbb{G}_{m}^{n}.

- Let $R_{0}^{\prime}=\mathbb{Z}$ and $R^{\prime}=\bigoplus_{n \geq 0} R_{n}^{\prime}$.
- Tensor product of motives defines a multiplication $R_{n^{\prime}}^{\prime} \otimes R_{n^{\prime \prime}}^{\prime} \rightarrow R_{n}^{\prime}$.
- Let $R_{0}^{\prime}=\mathbb{Z}$ and $R^{\prime}=\bigoplus_{n \geq 0} R_{n}^{\prime}$.
- Tensor product of motives defines a multiplication $R_{n^{\prime}}^{\prime} \otimes R_{n^{\prime \prime}}^{\prime} \rightarrow R_{n}^{\prime}$.

Lemma

Assume $n^{\prime}+n^{\prime \prime}=n$. Let $\left(L^{\prime} ; B^{\prime}\right) \in A_{n^{\prime}}$ and $\left(L^{\prime \prime} ; B^{\prime \prime}\right) \in A_{n^{\prime \prime}}$. Then $\left(L^{\prime} ; B^{\prime}\right) \times\left(L^{\prime \prime} ; B^{\prime \prime}\right)=\sum_{i}\left(L ; B_{i}\right)$, for some $\left(L ; B_{i}\right) \in A_{n}$. Assume that $L, L^{\prime}, L^{\prime \prime}$ are given by axis hyperplanes. Then,

$$
H_{\text {Nori }}^{n^{\prime}}\left(\mathbb{G}_{m}^{n^{\prime}}, B^{\prime} \cap \mathbb{G}_{m}^{n^{\prime}}\right) \otimes H_{\text {Nori }}^{n^{\prime \prime}}\left(\mathbb{G}_{m}^{n^{\prime \prime}}, B^{\prime \prime} \cap \mathbb{G}_{m}^{n^{\prime \prime}}\right)=H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right) \text {, }
$$

where B is the nice divisor given by the union of simplices B_{i}.

- Let $R_{0}^{\prime}=\mathbb{Z}$ and $R^{\prime}=\bigoplus_{n \geq 0} R_{n}^{\prime}$.
- Tensor product of motives defines a multiplication $R_{n^{\prime}}^{\prime} \otimes R_{n^{\prime \prime}}^{\prime} \rightarrow R_{n}^{\prime}$.

Lemma

Assume $n^{\prime}+n^{\prime \prime}=n$. Let $\left(L^{\prime} ; B^{\prime}\right) \in A_{n^{\prime}}$ and $\left(L^{\prime \prime} ; B^{\prime \prime}\right) \in A_{n^{\prime \prime}}$. Then $\left(L^{\prime} ; B^{\prime}\right) \times\left(L^{\prime \prime} ; B^{\prime \prime}\right)=\sum_{i}\left(L ; B_{i}\right)$, for some $\left(L ; B_{i}\right) \in A_{n}$. Assume that $L, L^{\prime}, L^{\prime \prime}$ are given by axis hyperplanes. Then,

$$
H_{\text {Nori }}^{n^{\prime}}\left(\mathbb{G}_{m}^{n^{\prime}}, B^{\prime} \cap \mathbb{G}_{m}^{n^{\prime}}\right) \otimes H_{\text {Nori }}^{n^{\prime \prime}}\left(\mathbb{G}_{m}^{n^{\prime \prime}}, B^{\prime \prime} \cap \mathbb{G}_{m}^{n^{\prime \prime}}\right)=H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)
$$

where B is the nice divisor given by the union of simplices B_{i}.

Proof.

$$
\begin{aligned}
& H_{\text {Nori }}^{n^{\prime}}\left(\mathbb{G}_{m}^{n^{\prime}}, B^{\prime} \cap \mathbb{G}_{m}^{n^{\prime}}\right) \otimes H_{\text {Nori }}^{n^{\prime \prime}}\left(\mathbb{G}_{m}^{n^{\prime \prime}}, B^{\prime \prime} \cap \mathbb{G}_{m}^{n^{\prime \prime}}\right) \\
= & H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, \mathbb{G}_{m}^{n^{\prime}} \times\left(B^{\prime \prime} \cap \mathbb{G}_{m}^{n^{\prime \prime}}\right) \cup\left(B^{\prime} \cap \mathbb{G}_{m}^{n^{\prime}}\right) \times \mathbb{G}_{m}^{n^{\prime \prime}}\right) \\
= & H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n},\left(\mathbb{G}_{m}^{n^{\prime}} \times B^{\prime \prime} \cup B^{\prime} \times \mathbb{G}_{m}^{n^{\prime \prime}}\right) \cap \mathbb{G}_{m}^{n}\right) \\
= & H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right) .
\end{aligned}
$$

by the definition of multiplication in A.

Theorem
There is an isomorphism of graded algebras $\phi: R^{\prime} \rightarrow A$.

Theorem

There is an isomorphism of graded algebras $\phi: R^{\prime} \rightarrow A$.

Idea of proof.

Let $n>0$. Let $Z=\left(Z_{0}, \ldots, Z_{n}\right)$ be the n-simplex in \mathbb{P}^{n} given by $Z_{i}: z_{i}=0$. Define A_{n}^{\prime} as the abelian group generated by (B) where B is an n-simplex in \mathbb{P}^{n} such that (Z, B) is admissible, subject to the following relations:

1. If the hyperplanes of B are not in general position, then $(B)=0$.
2. For every $\sigma \in S_{n}$,

$$
(\sigma B)=(-1)^{|\sigma|}(B) .
$$

3. For every family of hyperplanes B_{0}, \ldots, B_{n+1},

$$
\sum(-1)^{j}\left(\hat{B}^{j}\right)=0 .
$$

4. For every $g \in \mathbb{G}_{m}^{n}$,

$$
(g B)=(B),
$$

where the action of \mathbb{G}_{m}^{n} is as follows. For $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{G}_{m}^{n}$ and $p=\left(z_{0}: z_{1}: z_{2}: \ldots: z_{n}\right) \in \mathbb{P}^{n}$, let
$g \cdot p=\left(z_{0}: g_{1} z_{1}: g_{2} z_{2}: \ldots: g_{n} z_{n}\right)$.

Idea of proof, cont'd.

- Then,

$$
\begin{aligned}
A_{n}^{\prime} & \rightarrow A_{n} \\
(B) & \mapsto(Z ; B) .
\end{aligned}
$$

is an isomorphism.

- We will write an isomorphism $R_{n}^{\prime} \rightarrow A_{n}^{\prime}$.
- We will consider the underlying \mathbb{Z}-modules of motives.
- We will work in the homological setting. The category of cohomological motives is isomorphic to the opposite category of homological motives. We denote by $H_{n}^{\text {Nori }}(X, Y)$ the corresponding object of $H_{\text {Nori }}^{n}(X, Y)$.

Idea of proof, cont'd.

- In this case,

$$
M_{n}=\operatorname{gr}_{0}^{W}\left(\underset{B}{\lim } H_{n}^{\text {Nori }}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right)\right),
$$

such that the colimit is taken over all nice divisors B.

- By adding any such B some hyperplanes, we can divide it into "independent" simplices B^{i}.
- So, $B \subseteq \bigcup B^{i}$.
\downarrow This gives $\operatorname{gr}_{0}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B \cap \mathbb{G}_{m}^{n}\right) \rightarrow \bigoplus \operatorname{gr}_{0}^{W} H_{n}^{\text {Nori }}\left(\mathbb{G}_{m}^{n}, B^{i} \cap \mathbb{G}_{m}^{n}\right)$.
- Define

$$
\psi_{B^{i}}: \operatorname{gr}_{0}^{W} H_{\text {Nori }}^{n}\left(\mathbb{G}_{m}^{n}, B^{i} \cap \mathbb{G}_{m}^{n}\right)=\mathbf{1}(0)=\mathbb{Z} \rightarrow A_{n}^{\prime}
$$

as $\psi_{B^{i}}(1)=\left(B^{i}\right)$.

- This extends a map

$$
\psi: M_{n} \rightarrow A_{n}^{\prime} .
$$

Idea of proof, cont'd.

$>\psi: M_{n} \rightarrow A_{n}^{\prime}$. is surjective with kernel $\left\langle g x-x \mid g \in G_{n}, x \in M_{n}\right\rangle$.
$>$ Hence, this gives an isomorphism

$$
\phi_{n}: R_{n}^{\prime}=M_{n} /\left\langle g x-x \mid g \in G_{n}, x \in M_{n}\right\rangle \xrightarrow{\sim} A_{n}^{\prime} \xrightarrow{\sim} A_{n} .
$$

- By previous lemma, $\phi=\bigoplus_{n>0} \phi_{n}$ respects multiplication. Thus ϕ is an isomorphism of graded algebras.
- The comultiplication on A can be carried to R^{\prime}. This makes R^{\prime} a Hopf algebra.
- Let $\varphi=\bigoplus \varphi_{n}: R^{\prime} \rightarrow R$.

Conjecture

$$
\varphi \otimes \mathbb{Q}: R^{\prime} \otimes \mathbb{Q} \rightarrow R
$$

is an isomorphism of graded Hopf algebras.

Thank you!

