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Periods and Motives

Definition (Kontsevich, Zagier)
A period is a complex number whose real and imaginary parts are values
of absolutely convergent integrals∫

σ

f (x1, ..., xn)dx1...dxn,

where f is a rational function with rational coefficients and σ ⊆ Rn is
given by polynomial inequalities with rational coefficients.

Examples√
2 =

∫
2x2≤1

dx , π =
∫
x2+y2≤1

dxdy , ζ(2) =
∫
1≥t1≥t2≥0

dt1
t1

dt2
1−t2

,

log(2) =
∫ 2

1
dx
x , ζ(2, 1) =

∫
1≥t1≥t2≥t3≥0

dt1
t1

dt2
1−t2

dt3
1−t3

▶ Periods form a subring of C. We will denote the ring of periods by
Peff .

▶ Peff is countable.

▶ Z ⊂ Q ⊂ Q̄ ⊂ Peff ⊂ C.
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Definition
Let k be a subfield of C. A k-variety is a reduced separated scheme of
finite type over k.

Definition (Cohomological definition of periods)
Let X be a smooth Q-variety, Y ⊆ X a normal crossing divisor. The
period isomorphism

H i
dR(X ,Y )⊗Q C→ H i

B(X ,Y ;Q)⊗Q C

induces the period pairing

H i
dR(X ,Y )⊗ HB

i (X (C),Y (C);Q)→ C

ω ⊗ σ 7→
∫
σ

ω.

We call a period of (X ,Y ) any number in the image of this map.
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Example

▶ Let us consider the pair

(X ,Y ) = (P1
Q \ {0,∞}, {1, q}),

with q ∈ Q \ {0, 1}.

▶ First singular homology of (X (C),Y (C)) = (C∗, {1, q}) has a basis
{σ1, σ2}, where σ1 is a (counterclockwise) circle around 0 with
radius r < min{1, |q|} and σ2 is the straight line from 1 to q.

▶ First de Rham cohomology of (X ,Y ) = (SpecQ[x , x−1], {1, q}) has
a basis {ω1, ω2}, where ω1 =

dt
t , ω2 =

dt
q−1 .

▶ Hence this pair gives the matrix(∫
σ2
ω2

∫
σ2
ω1∫

σ1
ω2

∫
σ1
ω1

)
=

(
1 log q
0 2πi

)
which shows that log of rational numbers are periods.
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Cheking whether two complex numbers are equal or not is not easy. For
example

π
√
163 and 3 · log(640320)

both have decimal expensions beginning

40.10916999113251...

but they are not equal.

(eπ
√
163 = 262537412640768743.99999999999925007... is known as the

Ramanujan constant.)
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Conjecture (Period conjecture)
If a period has two integral representations, one can pass between them
using only the following calculus rules.

− Additivity of integral:∫
σ

ω1 + ω2 =

∫
σ

ω1 +

∫
σ

ω2∫
σ1∪σ2

ω =

∫
σ1

ω +

∫
σ2

ω

where σ1 ∩ σ2 = ∅.
− Change of variables: ∫

f (σ)

ω =

∫
σ

f ∗ω

where f is invertible and defined by polynomial equations with
rational coefficients.

− Stokes’ formula: ∫
σ

dω =

∫
∂σ

ω.
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The category of mixed motives MM(k) over a field k is a conjectural
Tannakian category, together with a contravariant functor
h : Vark → MM(k) such that any Weil cohomology theory H factors
through h:

Vark k − Vect

MM(k)

H

h

∃!
fH
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▶ Singular cohomology and de Rham cohomology induce functors

fB , fdR : MM(Q)→ Q− Vect .

▶ Then for any motive M ∈ MM(Q), the period pairing yields a pairing

fdR(M)⊗ fB(M)∨ → C.

▶ Let P(M) be the subfield of C generated by the image of the pairing.

▶ The following are equivalent.

− The period conjecture holds.
− ev : PKZ → C is injective.
− PKZ is an integral domain and for any (Nori) motive M,

trdeg[P(M) : Q] = dimGmot(M),

where Gmot(M) = Aut⊗ HB|⟨M⟩ is the Galois group of the Tannakian
subcategory ⟨M⟩ of MM(Q) generated by M.
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Nori Motives

Theorem
Let D be a diagram (quiver, directed graph), R be a ring and

T : D → R −Mod

be a (quiver) representation. Then, there is an R-linear abelian category
C(D,T ) with representation

T̃ : D → C(D,T )

and a faithful, exact, R-linear functor

fT : C(D,T )→ R −Mod

such that T factorises as

T : D
T̃−→ C(D,T )

fT−→ R −Mod

and C(D,T ) is universal with this property.
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▶ C(D,T ) is called the diagram category.

▶ If D is finite,
C(D,T ) = End(T )−Mod .

▶ In general,
C(D,T ) = 2− colimF C(F ,T

∣∣
F
),

where F runs through finite full subdiagrams of D, i.e., the objects
of C(D,T ) are the objects of C(F ,T

∣∣
F
) for some F and the

morphisms are

MorC(D,T )(X ,Y ) = lim−→
F

MorC(F ,T |F )(XF ,YF ),

where XF is the image of X ∈ C(F ′,T
∣∣
F ′) in C(F ,T

∣∣
F
) for F ⊇ F ′.

▶ Each object of C(D,T ) is a subquotient of a finite direct sum of
objects from {T̃ p | p ∈ D}.
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▶ Let X be a k-variety, Y ⊆ X be a closed subvariety and i ∈ Z. We
call (X ,Y , i) an effective pair.

▶ Let Pairseff be the diagram whose vertices are effective pairs and
edges are the following.

− For any morphism f : X → X ′ such that f (Y ) ⊆ Y ′, we have an
edge (X ′,Y ′, i) → (X ,Y , i).

− For any chain X ⊇ Y ⊇ Z of closed subvarieties, an edge
(Y ,Z , i) → (X ,Y , i + 1).

▶ The relative singular cohomology

H∗ : Pairseff → Z−Mod

(X ,Y , i) 7→ H i (X (C),Y (C);Z)

is a representation.

▶ We define the category of effective mixed Nori motives as

MMeff
Nori(k) := C(Pairs

eff ,H∗).
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▶ MMeff
Nori :=MM

eff
Nori(k) := C(Pairs

eff ,H∗).

Pairseff Z−Mod

MMeff
Nori

H∗

T̃ fH∗

▶ H i
Nori (X ,Y ) := T̃ (X ,Y , i) ∈MMeff

Nori.

▶ H i
Nori (X ) := H i

Nori (X , ∅).

Definition

1. We call an effective pair (X ,Y , i) an effective good pair if
H j(X (C),Y (C);Z) = 0 for j ̸= i and H i (X (C),Y (C);Z) is free.

2. An effective good pair is called an effective very good pair if X is
affine, X \ Y is smooth and either dim(X ) = i , dim(Y ) = i − 1 or
X = Y and dim(X ) < i .

3. We denote the full subdiagram of Pairseff with effective good pairs
by Goodeff .

4. We denote the full subdiagram of Goodeff with effective very good
pairs by VGoodeff .
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Lemma (Nori)
Let X be an affine k-variety of dimension n and Z ⊆ X is a Zariski closed
subset with dim(Z ) < n. Then there is a Zariski closed subset Y with
Z ⊆ Y ⊆ X and dim(Y ) < n such that (X ,Y , n) is a good pair.

▶ By using this lemma iteratively, for any affine variety X of dimension
n, we can find a filtration

∅ = F−1X ⊂ F0X ⊂ ... ⊂ Fn−1X ⊂ FnX = X

such that each (FjX ,Fj−1X , j) is very good.

▶ The induced chain complex

· · · → H i (FiX (C),Fi−1X (C);Z) δi→ H i+1 (Fi+1X (C),FiX (C);Z)→ · · ·

computes the singular cohomology of X .

Theorem
MMeff

Nori = C(Pairs
eff ,H∗), C(Goodeff ,H∗) and C(VGoodeff ,H∗) are

equvalent.
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▶ For good pairs (X ,Y , i) and (X ′,Y ′, i ′), let

H i
Nori (X ,Y )⊗ H i ′

Nori (X
′,Y ′) := H i+i ′

Nori (X × X ′,X × Y ′ ∪ X ′ × Y )

in the light of the Künneth formula.

▶ MMeff
Nori = C(Good

eff ,H∗) is a tensor category.

▶ 1(−1) := H1
Nori (Gm, {1}).

▶ The categoryMMNori :=MMNori (k) of mixed Nori motives is
defined as the localization ofMMeff

Nori with respect to 1(−1).

Theorem
MMNori is a Tannakian category with the fiber functor H∗.
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▶ 1(−n) := 1(−1)⊗n, for n ∈ Z.
▶ M(−n) := M ⊗ 1(−n), for n ∈ Z and M ∈MMNori .

▶ H i
Nori (PN) =

{
1(−n), if i = 2n and N ≥ n ≥ 0

0, otherwise.

▶ If Z is a projective variety of dimension n, then H2n
Nori (Z ) = 1(−n).
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▶ We work withMMNori,Q, the category of mixed Nori motives with
rational coefficients (i.e. replace Z−Mod by Q−Mod).

Definition
A motive M ∈MMNori,Q is called pure of weight n ∈ Z if it is a

subquotient of Hn+2j
Nori (Y )(j) for some Y smooth and projective and

j ∈ Z. A motive is called pure if it is a direct sum of pure motives of
some weights.

▶ 1(−n) is pure of weight 2n.

Theorem
On every motive M ∈MMNori,Q, there is a unique bounded increasing
filtration (WnM)n∈Z inducing the weight filtration under the Hodge
realization. Moreover, every morphism of Nori motives is strictly
compatible with this filtration.

▶ We call this filtration weight filtration and denote

grWn M := WnM/Wn−1M.

▶ grWn M is pure of weight n.
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Mixed Tate Motives
▶ A Nori motive M ∈MMNori,Q is called a mixed Tate Nori motive if

grW2nM is a direct sum of copies of 1(−n).
▶ We denote the full subcategory ofMMNori,Q containing these

objects byMTMNori,Q.

▶ (MTMNori,Q, 1(1)) is a mixed Tate category.

Example
Let B ⊆ Gm be such that B = {x1, · · · , xr}. We will find the weight
structure of H1

Nori (Gm,B). We have the following exact sequence

0→ H0
Nori (Gm)︸ ︷︷ ︸

1(0)

→ H0
Nori (B)︸ ︷︷ ︸
1(0)⊕r

→ H1
Nori (Gm,B)→ H1

Nori (Gm)︸ ︷︷ ︸
1(−1)

→ 0

Then,

grW0 H1
Nori (Gm,B) = 1(0)⊕(r−1)

grW2 H1
Nori (Gm,B) = 1(−1)

Therefore H1
Nori (Gm,B) is mixed Tate.
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Example
Let B = M0 ∪M1 ∪M2 ⊆ P2

C, where Mi are lines in P2
C in general

position such that they are not axis lines zi = 0. Then

grW0 H1
Nori (B ∩G2

m) = 1(0)

grW2 H1
Nori (B ∩G2

m) = 1(−1)⊕s

where s is the number of intersection of B with {z1 = 0} ∪ {z2 = 0}.
Using the exact sequence

0→ H1
Nori (G2

m)︸ ︷︷ ︸
1(−1)⊕2

→ H1
Nori (B∩G2

m)→ H2
Nori (G2

m,B∩G2
m)→ H2

Nori (G2
m)︸ ︷︷ ︸

1(−2)

→ 0

we have

grW0 H2
Nori (G2

m,B ∩G2
m) = 1(0)

grW2 H2
Nori (G2

m,B ∩G2
m) = 1(−1)⊕s−2

grW4 H2
Nori (G2

m,B ∩G2
m) = 1(−2)

and s − 2 ∈ {0, 1, 2, 3, 4}. Here 1(−2) is coming from the torus G2
m and

1(0) is coming from the triangle defined by B.
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Aomoto Polylogarithms

▶ There is a generalization of logarithms called polylogarithms which is
defined inductively by

ℓi1(z) = − log(1− z)

and

dℓin(z) = ℓin−1(z)
dz

z
,

with ℓin(0) = 0.

▶ They have the power series expansion

ℓin(z) =
∑
1≤m

zm

mn
,

for |z | < 1.
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▶ Fix some q ∈ Q \ {0, 1}. Let zi , i = 0, 1, ..., n, be the homogeneous
coordinates on Pn

Q.

▶ Let Li be the hyperplanes defined by zi = 0 and Mi be the
hyperlanes defined as M0 : z0 = z1;M1 : z0 = z1 + z2;Mi : zi = zi+1

for 2 ≤ i < n; and Mn : qz0 = zn.

▶ Let Mq =
⋃
Mi and L =

⋃
Li .

▶ ℓin(q) is a period of the mixed Tate motive

Hn
Nori (Pn

Q \ L,Mq \ (L ∩Mq)).

▶ We will call the configuration (L,Mq) as the polylogarithmic
configuration of q.
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▶ ℓi2 is called dilogarithm. Its configuration is given by

M0 : z0 = z1

M1 : z0 = z1 + z2

M2 : qz0 = z2.

L1

1

L2

q

1

M2

M1

L0

M0

Call D(q) for the triangle given by Mi . Then

ℓi2(q) =

∫
D(q)

dx

x
∧ dy

y
.
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▶ We call an n-simplex a family of n+ 1 hyperplanes (L0, ..., Ln) of Pn
k .

▶ A pair of simplices (L,M) is said to be admissible if they do not
have a common face.

▶ Let (L,M) be admissible pair of simplices such that the hyperplanes
of L and M are in general position. Let

ωL = d log(z1/z0) ∧ ...d log(zn/z0)

where zi = 0 is a homogeneous equation of Li . Let ∆M be the
simplex whose sides are Mi . Then

a(L,M) =

∫
∆M

ωL

is a period of
Hn

Nori (Pn \ L,M \ (L ∩M)).

▶ M = Hn
Nori (Pn \ L,M \ (L ∩M)) is a mixed Tate motive with

grW2nM = 1(−n),
grW0 M = 1(0).
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Definition
A0(k) := Z. For n > 0, define An(k) as the abelian group generated by
(L;M) where (L,M) is an admissible pair of simplices in Pn

k subject to
the following relations:

1. If the hyperplanes of one of L or M is not in general position (i.e.
degenerate), then (L;M) = 0.

2. For every σ ∈ Sn,

(σL;M) = (L;σM) = (−1)|σ|(L;M)

where σL and σM, are defined by the natural action of Sn on a set
indexed by 1, ..., n.

3. For every family of hyperplanes L0, ..., Ln+1 and an n-simplex M,∑
(−1)j(L̂j ;M) = 0,

where L̂j = (L0, ..., L̂j , ..., Ln+1), and the corresponding relation for
the second component.

4. For every g ∈ PGLn+1(k),

(gL; gM) = (L;M).
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▶

A1(k)
∼−→ k×

(L0, L1;M0,M1) 7→ r(L0, L1,M0,M1)

▶ The multiplication map µ : An′ × An′′ → An, for n
′ + n′′ = n, is

defined on the generators in the following way. Let (L′,M ′) and
(L′′,M ′′) be two admissible pairs of non-degenerate simplices from
Pn′ and Pn′′ , respectively. Also let L be a non-degenerate simplex
from Pn. Identify the affine spaces Pn \ L0 and
(Pn′ \ L′0)× (Pn′′ \ L′′0 ). Then M ′ ×M ′′ can be seen in Pn \ L0 and
hence in Pn. Cutting this product into simplices in Pn defines an
element in An which is defined as the product of (L′;M ′) and
(L′′;M ′′).

▶ A = ⊕An is a graded Hopf algebra.
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▶ Let G be the Galois group ofMTMNori,Q. Then

1→ U → G → Gm → 1

is split exact.

▶ Here, U = SpecR, where R =
⊕

d≥0 Rd is a graded Hopf algebra.

▶ MTMNori,Q is equivalent to the category of graded R-comodules.

Conjecture (Beilinson)
There is a natural isomorphism of graded Hopf algebras

A⊗Q ∼−→ R.
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A Construction of Mixed Tate Motives

▶ We will consider the motives coming from the following
configurations.

▶ Fix n ∈ N>0. Let
B =

⋃
1≤i≤m

Bi ,

where all Bi are hyperplanes in B that meet xi1 = ... = xik = 0
properly for all {i1, ..., ik} ⊆ {1, ..., n}.

▶ We call such B a nice divisor.

▶ We will be interested in the motives of the form

Hn
Nori (Gn

m,B ∩Gn
m).

▶ Hn
Nori (Gn

m,B ∩Gn
m) is a mixed Tate motive with

grW2nH
n
Nori (Gn

m,B ∩Gn
m) = 1(−n).
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▶ Let
M =

⊕
d≥0

Md

where

Md = grW2n−2d(lim←−
B

Hn
Nori (Gn

m,B ∩Gn
m))⊗ 1(n − d)

such that the limit is taken over all nice divisors B as in the
beginning of the section.

▶ In particular,
M0 = 1(0)

and
Mn = grW0 (lim←−

B

Hn
Nori (Gn

m,B ∩Gn
m)).
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▶ Viewing M as a graded R-comodule, we have a linear map
ν : M → R ⊗M. Let γi : M → Mi be the restriction map.

▶ Since M0 = 1(0) is realized as Z, there is a natural map ℓ : M0 → Q.

▶ By composing

h : M
ν−→ R ⊗M

idR ⊗γ0−−−−→ R ⊗M0
idR ⊗ℓ−−−−→ R ⊗Q ∼−→ R

we have a map h : M → R such that h|M0 = ℓ.

▶ This also gives

h|Mn : Mn →
⊕
i+j=n

Ri ⊗Mj → Rn ⊗M0 → Rn ⊗Q ∼−→ Rn.
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▶ Let Gn := Sn ⋉Gn
m, where Sn is the symmetric group of order n!,

and the action be given by σ · (a1, . . . , an) = (σ(a1), . . . , σ(an)).

▶ Then Gn acts on Gn
m by

(σ · a) · x = (−1)|σ|σ · (ax)

for σ ∈ Sn, a, x ∈ Gn
m.

▶ This action extends on

Mn = grW0 (lim←−
B

Hn
Nori (Gn

m,B ∩Gn
m)).

▶ Let
R ′
n := H0(Gn;Mn) = Mn/⟨gx − x | g ∈ Gn, x ∈ Mn⟩.
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Proposition
h|Mn induces a map φn : R ′

n → Rn.

Proof.
▶ Rn is given by the framed objects and the coaction Mn → Rn ⊗Mn

is given by frames

1(0)→ grW0 Hn
Nori (Gn

m,B ∩Gn
m)

and it corresponds to the periods of grW0 Hn
Nori (Gn

m,B ∩Gn
m).

▶ WLOG assume grW0 Hn
Nori (Gn

m,B ∩Gn
m) = 1(0).

▶ Its periods are scalar multiples of

ρ =

∫
B

dx1
x1
∧ . . . ∧ dxn

xn
.

▶ ρ is invariant under the action of both Sn and Gn
m.
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▶ Let R ′
0 = Z and R ′ =

⊕
n≥0 R

′
n.

▶ Tensor product of motives defines a multiplication R ′
n′ ⊗ R ′

n′′ → R ′
n.

Lemma
Assume n′ + n′′ = n. Let (L′;B ′) ∈ An′ and (L′′;B ′′) ∈ An′′ . Then
(L′;B ′)× (L′′;B ′′) =

∑
i (L;Bi ), for some (L;Bi ) ∈ An. Assume that

L, L′, L′′ are given by axis hyperplanes. Then,

Hn′

Nori (Gn′

m ,B
′ ∩Gn′

m )⊗ Hn′′

Nori (Gn′′

m ,B ′′ ∩Gn′′

m ) = Hn
Nori (Gn

m,B ∩Gn
m),

where B is the nice divisor given by the union of simplices Bi .

Proof.

Hn′

Nori (Gn′

m ,B
′ ∩Gn′

m )⊗ Hn′′

Nori (Gn′′

m ,B ′′ ∩Gn′′

m )

=Hn
Nori (Gn

m,Gn′

m × (B ′′ ∩Gn′′

m ) ∪ (B ′ ∩Gn′

m )×Gn′′

m )

=Hn
Nori (Gn

m, (Gn′

m × B ′′ ∪ B ′ ×Gn′′

m ) ∩Gn
m)

=Hn
Nori (Gn

m,B ∩Gn
m).

by the definition of multiplication in A.
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Theorem
There is an isomorphism of graded algebras ϕ : R ′ → A.

Idea of proof.
Let n > 0. Let Z = (Z0, . . . ,Zn) be the n-simplex in Pn given by
Zi : zi = 0. Define A′

n as the abelian group generated by (B) where B is
an n-simplex in Pn such that (Z ,B) is admissible, subject to the
following relations:

1. If the hyperplanes of B are not in general position, then (B) = 0.

2. For every σ ∈ Sn,
(σB) = (−1)|σ|(B).

3. For every family of hyperplanes B0, ...,Bn+1,∑
(−1)j(B̂ j) = 0.

4. For every g ∈ Gn
m,

(gB) = (B),

where the action of Gn
m is as follows. For g = (g1, . . . , gn) ∈ Gn

m and
p = (z0 : z1 : z2 : . . . : zn) ∈ Pn, let
g · p = (z0 : g1z1 : g2z2 : . . . : gnzn).
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Idea of proof, cont’d.

▶ Then,

A′
n → An

(B) 7→ (Z ;B).

is an isomorphism.

▶ We will write an isomorphism R ′
n → A′

n.

▶ We will consider the underlying Z-modules of motives.

▶ We will work in the homological setting. The category of
cohomological motives is isomorphic to the opposite category of
homological motives. We denote by HNori

n (X ,Y ) the corresponding
object of Hn

Nori (X ,Y ).
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Idea of proof, cont’d.

▶ In this case,

Mn = grW0 (lim−→
B

HNori
n (Gn

m,B ∩Gn
m)),

such that the colimit is taken over all nice divisors B.

▶ By adding any such B some hyperplanes, we can divide it into
”independent” simplices B i .

▶ So, B ⊆
⋃
B i .

▶ This gives grW0 Hn
Nori (Gn

m,B ∩Gn
m)→

⊕
grW0 HNori

n (Gn
m,B

i ∩Gn
m).

▶ Define

ψB i : grW0 Hn
Nori (Gn

m,B
i ∩Gn

m) = 1(0) = Z→ A′
n

as ψB i (1) = (B i ).

▶ This extends a map
ψ : Mn → A′

n.
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Idea of proof, cont’d.

▶ ψ : Mn → A′
n. is surjective with kernel ⟨gx − x | g ∈ Gn, x ∈ Mn⟩.

▶ Hence, this gives an isomorphism

ϕn : R ′
n = Mn/⟨gx − x | g ∈ Gn, x ∈ Mn⟩

∼−→ A′
n

∼−→ An.

▶ By previous lemma, ϕ =
⊕

n≥0 ϕn respects multiplication. Thus ϕ is
an isomorphism of graded algebras.
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▶ The comultiplication on A can be carried to R ′. This makes R ′ a
Hopf algebra.

▶ Let φ =
⊕
φn : R ′ → R.

Conjecture

φ⊗Q : R ′ ⊗Q→ R

is an isomorphism of graded Hopf algebras.
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Thank you!


