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CHAPTER 4

Vector Spaces

4.1. Vector Spaces and Subspaces

In section 1.3, we examined some algebraic properities of Rn. (See page 16 on the
handwritten notes.) We will define a vector space as a set with addition and scalar
multiplication satisfying these algebraic properities.

Definition. A vector space (over R) consists of the following:
(1) A non-empty set V of objects, called vectors,
(2) An operation called (vector) addition, which associates with each pair of vec-

tors v, u ∈ V , a vector u + v ∈ V , called the sum of u and v,
(3) An operation called scalar multiplication, which associates with each scalar

c ∈ R and vector v ∈ V , a vector c · v ∈ V , called the scalar multiple of v by c,
such that for any u, v, w ∈ V and for any scalars c, d ∈ R

(i) u + v = v + u
(ii) (u + v) + w = u + (v + w)

(iii) There is a zero vector, denoted by 0, in V such that u + 0 = 0
(iv) For each u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0
(v) c(u + v) = cu + cv

(vi) (c + d)u = cu + du
(vii) c(du) = (cd)u

(viii) 1u = u.

Here are some examples of vector spaces.

Example.
• Rn, where n ≥ 1 is an integer.
• The space Mm×n of m × n matrices, with matrix addition and scalar multipli-

cation, where m, n ≥ 1 are integers. (By theorem 2.1.)
• The space Pn of polynomials with real coefficients of degree at most n, where

n ≥ 0 is an integer. This consists of all polynomials of the form

p(x) = a0 + a1x + a2x2 + . . . + anxn

where ai ∈ R. Addition and scalar multiplication is given by(a0 + a1x + . . . + anxn) + (b0 + b1x + . . . + bnxn) = (a0 + b0) + (a1 + b1)x + . . . + (an + bnxn),
c(a0 + a1x + . . . + anxn) = ca0 + ca1x + . . . + canxn.

• The space P (also denoted by R[x]) of all polynomials with real coefficients.
2
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• The space RX of functions X Ï R, where X is a set. Addition and scalar
multiplication is given by(f + g )(x) = f (x) + g (x),(cf )(x) = cf (x),
where c ∈ R and f , g : X Ï R are functions.

• The space VX of functions X Ï V , where X is a set and V is a vector space.
• The space S of all doubly infinite sequences of real numbers. This consists of

the sequences of the form
{yk}k∈Z = (. . . , y−2, y−1, y0, y1, y2, . . .)

where yi ∈ R.
• R, the set of real numbers, with usual addition and multiplication.
• C, the set of complex numbers, with usual addition and multiplication.(a + bi) + (c + di) = (a + c) + (b + d)i

c(a + bi) = ca + abi
where a, b, c, d ∈ R.

• The space {0} containing only the zero vector.

Observation.
• If u, v, w ∈ V such that u + w = v + w, then u = v. (Cancellation Law for

Vector Addition)
• Zero vector in the axiom (iii) is unique.
• For any given u ∈ V , its additive inverse −u in the axiom (iv) is unique.

Proof.
• If u + w = v + w, then

u = u + 0 = u + (w + (−w)) = (u + w) + (−w)= (v + w) + (−w) = v + (w + (−w)) = v + 0 = v.
• If 0 and 0′ are zero vectors, then 0 + 0′ = 0 since 0′ is a zero vector and0 + 0′ = 0′ since 0 is a zero vector. So 0′ = 0 + 0′ = 0.
• If u + v1 = 0 and u + v2 = 0, then u + v1 = u + v2 and by cancellation law

v1 = v2.
□

Observation. For each u ∈ V and c ∈ R,
• 0u = 0,
• c0 = 0,
• −u = (−1)u.

Proof.
• Since 0u = (0 + 0)u = 0u + 0u, we have 0 = 0u.
• Since c0 = c(0 + 0) = c0 + c0, we have 0 = c0.
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• u + (−1u) = 1u + (−1)u = (1 + (−1))u = 0u = 0, so −u = (−1u) by the
uniqeness of additive inverse.

□

Subspaces. Notice that P3 ⊆ P4 and both of them are vector spaces with the same
addition and scalar multiplication. In this case, we will say that P3 is a subspace of P4.

A subset W of a vector space V will be called a subspace of V if W is also a vector
space with the same operations of vector addition and scalar multiplication on V . It is
easy to see that this definition is equivalent to the following definition.

Definition. Let V be a vector space. A subset W of V is called a subspace if it
satisfies the following three properties.

(i) The zero vector of V is in W .
(ii) W is closed under vector addition. That is, for any u, v ∈ W , we have u + v ∈

W .
(iii) W is closed under multiplication by scalars. That is, for any u ∈ W and for

any c ∈ R, we have cu ∈ W .

Example.
• For any vector space V , the set {0} consisting of only the zero vector, is a

subspace, called the zero subspace.
• Any vector space is a subspace of itself.
• A line in R2 through the origin is a subspace of R2.
• A line in R3 through the origin is a subspace of R3.
• A plane in R3 through the origin is a subspace of R3.

• In Rn, the subset of vectors of the form


x1
x2
...

xn−10

 is a subspace.

• Pn is a subspace of Pm, for any integers m ≥ n ≥ 0.
• Pn is a subspace of P, for any integer n ≥ 0.
• P is a subspace of RR.
• The diagonal n × n matrices form a subspace of Mm×n.
• An n × n matrix A is called a symmetric matrix if AT = A. The symmetric

n × n matrices form a subspace of Mm×n.
• The set

{p(x) ∈ P | p(5) = 0}
is a subspace of P.

Example.
• R2 is not a subspace of R3 because R2 is not even a subset of R3.
• A line in R2 not through the origin is not a subspace of R2 as it does not

contain the zero vector of R2.
To check that if a subset is a subspace, we can check (ii) and (iii) in the definition

above at once.
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Observation. A subset W of a vector space V is a subspace of V if and only if it
satisfies the following properties.

(i) The zero vector of V is in W .
(ii) For any u, v ∈ W , and for any c ∈ R, we have cu + v ∈ W .

The proof of this is left as an exercise.

Example. Let A be an m×n matrix. Then the solution set of the matrix equation
Ax = 0 is a subspace of Rn.

Solution. 0 is in the solution set of Ax = 0. If u and v are two solutions of Ax = 0
and c ∈ R, then A(cu + v) = c(Au) + Av = c0 + 0 = 0. So cu + v is also a solution of
Ax = 0.

A Subspace Spanned by a Set. Let V be a vector space and let v1, . . . , vn ∈ V .

Definition. We define Span{v1, . . . , vn} as the set of linear combinations of v1, . . . , vn.Span{v1, . . . , vn} = {c1v1 + . . . + cnvn | c1, . . . , cn ∈ R}.

Theorem 4.1. Span{v1, . . . , vn} is a subspace of V .

We call Span{v1, . . . , vn} the subspace spanned (or generated) by v1, . . . , vn.

Proof. We have 0 = 0v1 + 0v2 + . . . + 0vn ∈ Span{v1, . . . , vn}. Let u, w ∈Span{v1, . . . , vn} and let r ∈ R. Then

u = c1v1 + . . . + cnvn

w = d1v1 + . . . + dnvn

for some ci, di ∈ R. Then

u + rw = (c1 + rd1)v1 + . . . (cn + rdn)vn ∈ Span{v1, . . . , vn}.

□

Example. Show that

W =



a

−2a + b3a − 2b
b

 | a, b ∈ R


is a subspace of R4.

Solution. An arbitrary vector in W has the form
a

−2a + b3a − 2b
b

 = a


1

−230
 + b


01

−21
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and this shows that

W =
a


1

−230
 + b


01

−21
 | a, b ∈ R


= Span




1
−230

 ,


01

−21


 .

Thus W is a subspace, by theorem 4.1.

4.2. Null Spaces, Column Spaces, Row Spaces, and Linear Transformations

Linear Transformations. In section 1.8, we defined linear transformations Rn Ï
Rm. Now, we will generalize this notion to maps between vector spaces.

Definition. A linear transformation (or linear map) from a vector space V into
a vector space W is a function T : V Ï W such that

T(cu + v) = cT(u) + T(v)
for all u, v ∈ V and for all c ∈ R.

Example. The derivative D : P Ï P,
D(a0 + a1x + a2x2 + a3x3 + . . . + anxn) = a1 + 2a2x + 3a3x2 + . . . + nanxn−1

is a linear transformation.

Example. The function T : Pn Ï Rn+1 given by

T(a0 + a1x + a2x2 + . . . + anxn) =


a0
a1
a2
...

an


is a linear transformation.

• Recall that range of a linear transformation T : V Ï W is the subsetRange(T) = {T(u) ∈ W | u ∈ V}
of W .

• We define the kernel (or null space) of a linear transformation T : V Ï W as
the subset Ker(T) = {u ∈ V | T(u) = 0}
of V .

Observation. Let T : V Ï W be a linear transformation.
(i) T(0) = 0.

(ii) Range of T is a subspace of W .
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(iii) Kernel of T is a subspace of V .
(iv) T is onto if and only if range of T is W .
(v) T is one-to-one if and only if kernel of T is {0}.

Proof.
(i) T(0) = T(0 + 0) = T(0) + T(0), so 0 = T(0).
(ii) 0 is in the range, since T(0) = 0. Let w1, w2 be in the range of T and let c ∈ R.

Then w1 = T(v1) and w2 = T(v2) for some v1, v2 ∈ V . Then

T(cv1 + v2) = cT(v1) + T(v2) = cw1 + w2,
so cw1 + w2 is in the range of T. Thus range of T is a subspace of W .

(iii) 0 is in the kernel, since T(0) = 0. Let v1, v2 be in the kernel of T and let c ∈ R.
Then T(v1) = 0 and T(v2) = 0. Then

T(cv1 + v2) = cT(v1) + T(v2) = c0 + 0 = 0
so cv1 + v2 is in the kernel of T. Thus kernel of T is a subspace of V .

(iv) By definition.
(v) If T is one-to-one and if T(u) = 0, then T(u) = 0 = T(0) and we have u = 0.

If kernel of T is {0} and if T(u) = T(v), then T(u − v) = T(u) − T(v) = 0 and
T(u) = T(v).

□

Example. Let

T : R3 Ï R3x1
x2
x3

 7Ï

x1 + x2 − 5x3
x1 − 3x2 − x3
x1 − x2 + 6x3


Then T is linear, with the standard matrix

A = 1 2 −51 −3 −11 −2 6
 .

Kernel of T is the set of all vectors

x1
x2
x3

 satisfying

x1 + x2 − 5x3
x1 − 3x2 − x3
x1 − x2 + 6x3

 = 000
 ,

that is the solution set of linear system

x1 + x2 − 5x3 = 0
x1 − 3x2 − x3 = 0
x1 − x2 + 6x3 = 0.
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This is also the solution set of the homogeneous equation Ax = 0.
Range of T is the set of all vectors of the formx1 + x2 − 5x3

x1 − 3x2 − x3
x1 − x2 + 6x3

 = x1
111

 + x2
 1

−3
−1

 + x3
−5

−16
 ,

that is the span of 
111

 ,

 1
−3
−1

 ,

−5
−16

 .

So this is given by the span of the columns of A.

The Null Space and the Column Space of a Matrix.

Definition. Let A be an m × n matrix.
• The null space of A, written as Nul A, is defined as kernel of the linear trans-

formation x 7Ï Ax, that is, the set of all solutions of the homogeneous equation
Ax = 0. Nul A = {x ∈ Rn | Ax = 0}.

• The column space of A, written as Col A, is defined as range of the linear
transformation x 7Ï Ax, that is, the set of all linear combinations of the
columns of A. If A = [

a1 . . . An
]
, thenCol A = {b ∈ Rm | b = Ax for some x ∈ Rn}= Span{a1, . . . , an}.

Example. Let A = [ 1 −3 −2
−5 9 1 ]

. Is u =  53
−2

 in the null space of A.

Solution. We have Au = 0, so u ∈ Nul A.

We have already proved the following results in the observation above.

Theorem 4.2. The null space of an m × n matrix A is a subspace of Rn. Equiva-
lently, the set of all solutions to a system Ax = 0 of m homogeneous linear equations
in n unknowns is a subspace of Rn.

Theorem 4.3. The column space of an m × n matrix A is a subspace of Rm.

Example. Let W be the set of all vectors


a
b
c
d

 ∈ R4 satisfying a − 2b + c = 5d

and c − a = b. Show that W is a subspace of R4.
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Solution. W is the solution set of the homogeneous linear system

a − 2b + c − 5d = 0
−a − b + c = 0.

Thus, W is a subspace of R4.
• Solving the equation Ax = 0 gives an explicit description of Nul A.

Example. Find a spanning set for the null space of the matrix

A = −3 6 −1 1 −71 −2 2 3 −12 −4 5 8 −4


Solution. We need to solve Ax = 0.

[
A 0]

∼

1 −2 0 −1 3 00 0 1 2 −2 00 0 0 0 0 0
 .

This corresponds to

x1 − 2x2 − x4 + 3x5 = 0
x3 + 2x4 − 2x5 = 0.

Its solutions are
x1
x2
x3
x4
x5

 =


2x2 + x4 − 3x5
x2

−2x4 + 2x5
x4
x5

 = x2


21000

 + x4


10
−210

 + x5


−30201

 .

Thus

Nul A = Span



21000

 ,


10

−210

 ,


−30201


 .

Example. Find a spanning set for the column space of the matrix

A = −3 6 −1 1 −71 −2 2 3 −12 −4 5 8 −4


Solution.

Col A = Span


−312
 ,

 6
−2
−4

 ,

−125
 ,

138
 ,

−7
−1
−4

 .
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Example. Find a matrix A such that Col A = W , where

W =


7a − 6b
a + b3a

 | a, b ∈ R

 .

Solution. Since

W =
a

713
 + b

−610
 | a, b ∈ R

 = Span


713
 ,

−610


we have Col A = W , for A = 7 −61 13 0
.

Example. Let A =


1 4 52 9 173 12 234 17 27
. Is b =


1026
 in the column space of A?

Solution. b ∈ Col A if and only if Ax = b is consistent.

[
A b

]
∼


1 4 5 10 1 7 −20 0 8 −10 0 0 −4

 .

This represents an inconsistent system. Thus b ̸∈ Col A.

Observation. Let A be an m × n matrix.
• The following are equivalent.

(i) Nul A = {0}.
(ii) The equation Ax = 0 has only the trivial solution.

(iii) The linear transformation x 7Ï Ax is one-to-one.
• The following are equivalent.

(i) Col A = Rm.
(ii) The equation Ax = b has a solution for every b ∈ Rm.

(iii) The linear transformation x 7Ï Ax is onto.

The Row Space. If A is an m × n matrix, then A is of the form

A =


row1(A)row2(A)
...rowm(A)

 .

We can see each row as a vector in Rn. ((rowi(A))T ∈ Rn.)
The row space of A, written as Row A, is defined as the set of all linear combinations

of the rows of A. Row A = Span{(row1(A))T , . . . , (rowm(A))T}.
In other words Row A = Col AT . Then Row A is a subspace of Rn.
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4.3. Linearly Independent Sets; Bases

Linear Independence. Recall the definition of linear Independence and dependence
in Rn. The same definition also generalizes to an arbitrary vector space.

Definition. Let V be a vector space. A subset {v1, . . . , vn} of V is called linearly
dependent if there exist scalars c1, . . . , cn ∈ R, not all of which are 0, such that

c1v1 + . . . + cnvn = 0.
It is called linearly independent otherwise, that is if the vector equation

x1v1 + . . . + xnvn = 0
has only the trivial solution x1 = 0, . . . , xn = 0.

Just as in Rn,
• {v} is linearly independent ⇐Ñ v ̸= 0
• {v1, v2} is linearly independent ⇐Ñ neither of v1 and v2 is a multiple of the

other
The following theorem has the same proof as theorem 1.7. and the observation

after that.
Theorem 4.4. Let S = {v1, . . . , vn} be a subset of a vector space V such that n > 1

and v1 ̸= 0. Then, S is linearly dependent if and only if we have
vj ∈ Span{v1, . . . , vj−1}

for some j > 1.

Example. Let p1(x) = 1, p2(x) = x, p3(x) = x2 and p4(x) = 2 − 3x + x2. Then
{p1, p2, p3, p4} is linearly dependent in P because

p4 = 2p1 − 3p2 + p3.
Observation. Let T : V Ï W be a linear transformation.
(i) {v1, . . . , vn} is linearly dependent in V ÍÑ {T(v1), . . . , T(vn)} is linearly de-

pendent in W .
(ii) {T(v1), . . . , T(vn)} is linearly independent in W ÍÑ {v1, . . . , vn} is linearly

independent in V .
(iii) T is one-to-one and {v1, . . . , vn} is linearly independent in V ÍÑ {T(v1), . . . , T(vn)}

is linearly independent in W .

Proof.
(i) If {v1, . . . , vn} is linearly dependent, then there exist c1, . . . , cn ∈ R, not all of

which are 0, such that
c1v1 + . . . + cnvn = 0.

Then,
c1T(v1) + . . . cnT(vn) = T(c1v1 + . . . + cnvn)= T(0)= 0.
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(ii) Follows by (i).
(iii) Consider the equation

x1T(v1) + . . . + xnT(vn) = 0.
This is the same as

T(x1v1 + . . . xnvn) = 0.
If T is one-to-one, then

x1v1 + . . . + xnvn = 0.
If {v1, . . . , vn} is linearly independent, then x1 = 0, . . . , xn = 0.

□

Remark. We may have {v1, . . . , vn} is linearly independent but {T(v1), . . . , T(vn)}
is linearly dependent, when T is not one-to-one. The most basic example of that is
when T = 0 (mapping everything to 0). Also consider the following example.

Example. Let T : R5 Ï R3 be the linear transformation whose standard matrix is

A = −3 6 −1 1 −71 −2 2 3 −12 −4 5 8 −4
 .

We have T(e1) = −312
 and T(e2) =  6

−2
−4

 = −2T(e1). So {e1, e2} is linearly indepen-

dent in R5 but {T(e1), T(e2)} is linearly dependent in R3.
Observation.

• Any set which contains a linearly dependent set is linearly dependent.
• Any subset of a linearly independent set is linearly independent.
• Any set which contains the 0 vector is linearly dependent.

The proof of this is left as an exercise.

Basis. Consider the vectors

e1 = 100
 , e2 = 010

 , e3 = 001


from R3. Any b = b1
b2
b3

 ∈ R3 can be written as a linear combination of e1, e2, e3 in the

unique way
b = b1e1 + b2e2 + b3e3.

Also let

v1 =  10
−1

 , v2 = 020
 , v3 = 011

 .
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Any b ∈ R3 can be written as a linear combination of v1, v2, v3 because Span{v1, v2, v3} =
R3. This representation is also unique as the vector equation

x1v1 + x2v2 + x3v3 = b
has the unique solution if it is consistent. This is because {v1, v2, v3} is linearly inde-
pendent.

Definition. Let V be a vector space. A set of vectors B in V is called a basis for
V if

(i) B is linearly independent, and
(ii) Span B = V .

Example.
• {e1, e2, . . . , en} ⊆ Rn is a basis for Rn. This is called the standard basis for Rn.
• {1, x, x2, . . . , xn} is a basis for Pn. This is called the standard basis for Pn.

• Let A be an invertible n × n matrix. Then the columns of A form a basis for
Rn because they are linearly independent and they span Rn , by the Invertible Matrix
Theorem (theorem 2.8).

• Let {v1, v2, . . . , vm} be a basis for Rn. Since it is linearly independent, m ≤ n,
by theorem 1.8. Since it spans Rn, we have n ≤ m. Thus m = n. Then the matrix[
v1 v2 . . . vn

]
is invertible by the Invertible Matrix Theorem (theorem 2.8), since

its columns are linearly independent.
To sum up:

Observation. {v1, . . . , vm} is a basis for Rn ⇐Ñ n = m and
[
v1 . . . vn

]
∼ In.

Example.

 10
−1

 ,

020
 ,

011
 is a basis for R3 since

 1 0 00 2 1
−1 0 1

 is invertible.

Spanning set theorem.

Example. Let

v1 =  23
−5

 , v2 = −104
 , v3 = 033


and

H = Span{v1, v2, v3}.
Notice that V3 = v1 + 2v2. Then Span{v1, v2} = Span{v1, v2, v3} = H. Clearly, {v1, v2}
is linearly independent. Thus {v1, v2} is a basis for H.

Theorem 4.5 (The Spanning Set Theorem). Let V be a vector space, S = {v1, . . . , vm} ⊆
V and H = Span S.
(a) If vk ∈ Span{v1, . . . , vk−1, vk+1, . . . , vm}, then Span{v1, . . . , vk−1, vk+1, . . . , vm} = H.
(b) If H ̸= {0}, then a subset of S is a basis for H.
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Proof. (a) Span{v1, . . . , vk−1, vk+1, . . . , vm} ⊆ H: If u ∈ Span{v1, . . . , vk−1, vk+1, . . . , vm},
then for some ci ∈ R,

u = c1v1 + . . . + ck−1vk−1 + ck+1vk+1 + . . . + cmvm= c1v1 + . . . + ck−1vk−1 + 0vk + ck+1vk+1 + . . . + cmvm

∈ Span{v1, . . . , vm} = H.
H ⊆ Span{v1, . . . , vk−1, vk+1, . . . , vm}: Since vk ∈ Span{v1, . . . , vk−1, vk+1, . . . , vm},

vk = d1v1 + . . . + dk−1vk−1 + dk+1vk+1 + . . . + dmvm

for some di ∈ R. If w ∈ H = Span{v1, . . . , vm}, then for some bi ∈ R,
w = b1v1 + . . . + bk−1bk−1 + +bkvk + bk+1vk+1 + . . . + bmvm= (b1 + bkd1)v1 + . . . (bk−1 + bkdk−1)vk−1 + (bk+1 + bkdk+1)vk+1 + . . . + (bm + bkdm)vm

∈ Span{v1, . . . , vk−1, vk+1, . . . , vm}.
(b) If S is linearly independent, then it is already a basis for H. Otherwise, one of the

vectors in S depends on the others and can be deleted, by part (a). So long as there
are two or more vectors in the spanning set, we can repeat this process until the
spanning set is linearly independent and hence is a basis for H. If the spanning set
is eventually reduced to one vector, that vector will be nonzero (and hence linearly
independent) because H ̸= {0}.

□

• A basis is a spanning set that is as small as possible. A basis is also a linearly
independent set that is as large as possible.

Example.

•


200

 ,

350
 is linearly independent but does not span R3.

•


200

 ,

350
 ,

 71113
 is a basis for R3.

•


200

 ,

350
 ,

 71113
 ,

171923
 spans R3 but is linearly dependent.

Bases for Nul A, Col A, and Row A.

Example. Find a basis for Nul B, Col B and Row B, where

B = [
b1 b2 . . . b7] =


1 7 0 0 −2 0 −10 0 1 0 3 0 −60 0 0 1 4 0 00 0 0 0 0 1 00 0 0 0 0 0 0

 .

Solution. Note that B is already in the reduced echelon form.
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• Nul B: Solving Bx = 0, we have

x1 = −7x2 + 2x5 + x7
x2 is free
x3 = −3x5 + 6x7
x4 = −4x5
x5 is free
x6 = 0
x7 is free.

So

Nul B = Span




−7100000

 ,



20
−3
−4100

 ,



1060001




= Span{v1, v2, v3}.

By looking at 2nd, 5th and 7th entries of v1, v2, v3, we can see that they are
linearly independent. Hence

{v1, v2, v3} =




−7100000

 ,



20
−3
−4100

 ,



1060001




is a basis for Nul B.

• Col B: By definition, Col B = Span{b1, . . . b7}. Notice that

b2 = 7b1
b5 = −2b1 + 3b3 + 4b4
b7 = −b1 − 6b3.

So Col B = Span{b1, . . . b7} = Span{b1, b3, b4, b6}. It is easy to see that
b1, b3, b4, b6 are linearly independent. Thus

{b1, b3, b4, b6} =



10000

 ,


01000

 ,


00100

 ,


00010




is a basis for Col B.
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• Row B: It is easy to see that
{(1, 7, 0, 0, −2, 0, −1), (0, 0, 1, 0, 3, 0, −6), (0, 0, 0, 1, 4, 0, 0), (0, 0, 0, 0, 0, 1, 0)}

is a basis for Row B.

Example. Find a basis for Nul A, Col A and Row A, where

A = [
a1 a2 . . . a7] =


1 7 0 0 −2 1 −13 21 1 0 −3 −1 −9

−6 −42 1 1 19 −4 0
−2 −14 0 −1 0 3 20 0 −4 3 0 5 24

 .

Solution. Via row reduction, it can be shown that A is is row equivalent to the
matrix B in the example above.

• Nul A: Since A ∼ B, the solution set of Ax = 0 is the same as the solution set
of Bx = 0. So Nul A = Nul B. Hence



−7100000

 ,



20
−3
−4100

 ,



1060001




is a basis for Nul A.

• Col A: Row reduction protects all the linear relations between the column
vectors. So we also have,

a2 = 7a1
a5 = −2a1 + 3a3 + 4a4
a7 = −a1 − 6a3

since A ∼ B. Therefore, Col A = Span{a1, . . . a7} = Span{a1, a3, a4, a6}. Sim-
ilarly, since b1, b3, b4, b6 are linearly independent, a1, a3, a4, a6 are linearly in-
dependent. Thus

{a1, a3, a4, a6} =



13

−6
−20

 ,


0110

−4

 ,


001

−13

 ,


1

−1
−435




is a basis for Col A.
• Row A: B can be obtained from A by row operations since A ∼ B and therefore

the rows of B are linear combinations of the rows of A. So, Row B ⊆ Row A.
Similarly, A can be obtained from B by row operations, so Row A ⊆ Row B.
Therefore Row A = Row B. Thus

{(1, 7, 0, 0, −2, 0, −1), (0, 0, 1, 0, 3, 0, −6), (0, 0, 0, 1, 4, 0, 0), (0, 0, 0, 0, 0, 1, 0)}
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is a basis for Row A.

Generalizing the discussion in the examples above, we have the following results.

Observation. If A ∼ B, then Nul A = Nul B.

Theorem 4.6. The pivot columns of a matrix A form a basis for Col A.

Theorem 4.7. If A ∼ B, then Row A = Row B. If B is in echelon form, the nonzero
rows of B form a basis for Row A = Row B.

4.4. Coordinate Systems

Theorem 4.8 (The Unique Representation Theorem). Let B = {b1, . . . , bn} be a
basis for a vector space V . Then for each u ∈ V , there exists a unique set of scalars
c1, . . . , cn ∈ R such that

u = c1b1 + . . . + cnbn.

Proof. Since Span B = V , there exists such scalars. If also
u = d1b1 + . . . + dnbn

for some d1, . . . , dn ∈ V , then0 = (c1 − d1)b1 + . . . + (cn − dn)bn.
Since B is linearly independent, c1 −d1 = 0, c2 −d2 = 0, . . ., cn −dn = 0. Thus c1 = d1,
c2 = d2, . . ., cn = dn. □

Definition.
• Let B = {b1, . . . , bn} be a basis for a vector space V and u ∈ V . The coordi-

nates of u relative to the basis B (or the B-coordinates of u) are the unique
numbers c1, . . . , cn ∈ R such that

u = c1b1 + . . . + cnbn.
• In this case we call

[u]B = c1
...

cn


B-coordinate vector of u.

Example. Let b1 = [11]
, b2 = [ 1

−1]
. Then B = {b1, b2} is a basis for R2. If an

u ∈ R2 has the coordinate vector [u]B = [ 7
−3]

, then

u = 7b1 + (−3)b2 = 7 [11]
− 3 [ 1

−1] = [ 410]
.
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Example. The entries in the vector u = [ 410]
are the coordinates of u relative to

the standard basis ε = {e1, e2}, since[ 410] = 4e1 + 10e2.
So, if ε = {e1, e2}, then [u]ε = u.

Example. Let v1 = 123
, v2 = −1

−10
 and H = Span{v1, v2}. Let u = −103

. Then

B = {v1, v2} is a basis for H. Is u ∈ H? If it is, find [u]B.

Solution. We need to solve x1v1 + x2v2 = u. This corresponds to the following
augmented matrix. 1 −1 −12 −1 03 0 3

 ∼

1 0 10 1 20 0 0
 .

So, u ∈ H and u = v1 + 2v2. Thus [u]B = [12]
.

Example. Let B = {1, x, x2, x3} ⊆ P3. Then B is a basis for P3. Consider
p = 3 − 2x + x3.

Then,
p = 3 · 1 + (−2) · x + 0 · x2 + 1 · x3

and [p]B =


3
−201

.

Coordinate mapping.

Definition. Let B = {b1, . . . , bn} be a basis for a vector space V . The mapping
V Ï Rn

u 7Ï [u]B
is called the coordinate mapping (determined by B).

Definition. A one-to-one, onto linear transformation is called an isomorphism.

Theorem 4.9. The coordinate mapping is an isomorphism.

Proof. Linearity: Let u, v ∈ V and r ∈ R. Then
u = c1b1 + . . . + cnbn

v = d1b1 + . . . + dnbn
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for some unique ci, di ∈ R and

[u]B = c1
...

cn

 , [v]B = d1
...

dn

 .

Then,
ru + v = (rc1 + d1)b1 + . . . + (rcn + dn)bn.

So

[ru + v]B = rc1 + d1
...

rcn + dn

 = r

c1
...

cn

 + d1
...

dn

 = r[u]B + [v]B.

Thus, the coordinate mapping is linear.
One-to-one: Suppose [u]B = [v]B for some u, v ∈ V . Call

[u]B = [v]B = h1
...

hn

 .

Then,
u = h1b1 + . . . + hnbn = v.

So, the coordinate mapping is one-to-one.

Onto: Let

h1
...

hn

 ∈ Rn be an arbitrary vector. Consider

u = h1b1 + . . . + hnbn ∈ V.

Then [u]B = h1
...

hn

. Hence, the coordinate mapping is onto. □

Example.
• B = {1, x, x2, x3} is the standard basis for P3. If p = a0 + a1x + a2x2 + a3x3,

then

[p]B =


a0
a1
a2
a3

 .

The map

P2 Ï R3
p 7Ï [p]B

is an isomorphism.
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• In general, B = {1, x, x2, . . . , xn} is the standard basis for Pn. An arbitrary
element of Pn is of the form

p = ao + a1x + a2x2 + . . . + anxn

and

[p]B =


a0
a1
a2
...

an

 .

Similarly,

Pn Ï Rn+1

ao + a1x + a2x2 + . . . + anxn 7Ï


a0
a1
a2
...

an


is an isomorphism.

Observation. If T : V Ï W is an isomorphism,

{v1, . . . , vn} is linearly independent in V ⇐Ñ {T(v1), . . . , T(vn)} is linearly independent in W.

Example. Is {1 + 2x2, 4 + x + 5x2, 3 + 2x} linearly independent in P2?
Solution. {1 + 2x2, 4 + x + 5x2, 3 + 2x} is linearly independent in P2 if and only if

102
 ,

415
 ,

320
 is linearly independent in R3. To check that we need to solve the

homogeneous system represented by the following augmented matrix.1 4 3 00 1 2 02 5 0 0
 ∼

1 4 3 00 1 2 00 0 0 0
 .

So,


102

 ,

415
 ,

320
 is linearly dependent. Thus {1 + 2x2, 4 + x + 5x2, 3 + 2x} is

linearly dependent.

Coordinates in Rn. Let B be a basis for Rn. The coordinate mapping

Rn Ï Rn

u 7Ï [u]B
corresponds to coordinate change.



4.5. THE DIMENSION OF A VECTOR SPACE 21

Example. Consider R2 with a basis B = {b1, b2}, where b1 = [21]
, b2 = [

−11 ]
.

Let v = [45]
. Solving [2 −1 41 1 5]

∼
[1 0 30 1 2]

gives v = 3b1 + 2b2. So [v]B = [32]
.

Here we have [2 −11 1 ] [32] = [45]
ÍÑ

[
b1 b2] [v]B = v.

In general, let B = {b1, . . . , bn} be a basis for Rn. Let v ∈ Rn. Call [v]B = c1
...

cn

.

ÍÑ v = c1b1 + . . . cnbn

ÍÑ v = [
b1 . . . bn

] c1
...

cn


ÍÑ v = PB[v]B.

We call
[
b1 . . . bn

]
the change-of-coordinates matrix from B to the standard basis

in Rn and denote
PB = [

b1 . . . bn
]

.

Observation. v = PB[v]B.

Since B is a basis for Rn, the matrix PB is invertible.
ÍÑ P−1

B v = [v]B.

Observation. P−1
B is the standard matrix for the coordinate mapping

Rn Ï Rn

u 7Ï [u]B.

4.5. The Dimension of a Vector Space

Theorem 4.10. If a vector space V has a basis
B = {b1, . . . , bn}

then any subset S of V with |S| > n is linearity dependent.
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Proof. Suppose S = {v1, . . . , vm} with m > n. Then

ÍÑ {[v1]B, . . . , [vm]B}

is linearly independent in Rn because m > n.

ÍÑ {v1, . . . , vm}

is linearity dependent in V . □

Definition. If a vector space V is spanned by a finite set, then V is called finite-
dimensional. Otherwise V is called infinite-dimensional.

Example.
• Rn is finite-dimensional.
• P is infinite-dimensional.

Theorem 4.11. If V is a finite-dimensional vector space, then any two bases of V
has the same (finite) number of elements.

Proof. Since V is spanned by a finite set, V has a finite basis.
Let B1 and B2 be two bases for V . Since B2 is linearly independent and B1 is a

basis, by theorem 4.10, |B2| ≤ |B1|. Similarly, by theorem 4.10, we have |B1| ≤ |B2|.
So |B1| = |B2|. □

Definition. Let V be a finite-dimensional vector space. The dimension of V , writ-
ten as dim V , is the number of vectors in a basis for V .

Note that dim{0} is defined to be 0.

Example.
• dimRn = n
• dimPn = n + 1

Example. Let

H = Span


123
 ,

 4
−17

 .

Since

123
 and

 4
−17

 are not multiple of each other, they are linearly independent.

Therefore


123

 ,

 4
−17

 is a basis for H. Thus dim H = 2.
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Example. Let v1 =


1234
, v2 =


−105
−4

, v3 =


−1213
−2

, v4 =


1230
 and H = Span{v1, v2, v3, v4}.

Then H = Col A, where A = [
v1 v2 v3 v4].

A =


1 −1 −1 12 0 2 23 5 13 34 −4 −2 0
 ∼


1 −1 −1 10 2 4 00 0 2 −40 0 0 0

 .

Thus {v1, v2, v3} is a basis for H and therefore dim H = 3.

Subspaces of a Finite-Dimensional Space.

Theorem 4.12. Let H be a subspace of a finite-dimensional vector space V . Any
linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H
is finite-dimensional and dim H ≤ dim V.

Proof. If H = {0}, then dim H = 0 ≤ dim V .
Suppose H ̸= {0} and let S = {v1, . . . , vm} be a linearly independent subset of H.

If Span S = H, then S is a basis for H. Otherwise, there is some vm+1 ∈ H such that
vm+1 ̸∈ Span S. Then {v1, . . . , vm, vm+1} is linearly independent. Again if this spans H,
then it is a basis. If not, then we can again expend it.

So long as the new set does not span H, we can continue this process of expanding
S to a larger linearly independent set in H. But the number of vectors in a linearly
independent expansion of S can never exceed the dimension of V , by theorem 4.10.
So eventually the expansion of S will span H and hence will be a basis for H, anddim H ≤ dim V . □

Example. The subspaces of R3:
• 0-dimensional subspaces: Only {0}.
• 1-dimensional subspaces: Span{v}, for any v ∈ R3 with v ̸= 0. (lines through

the origin)
• 2-dimensional subspaces: Span{u, v} for any linearly independent u, v ∈ R3.

(planes through the origin)
• 3-dimensional subspaces: Only R3 itself.

Theorem 4.13. Let V be an n-dimensional vector space, n ≥ 1. Any linearly
independent set of exactly n elements in V is automatically a basis for V . Any set of
exactly n elements that spans V is automatically a basis for V .

Proof. By theorem 4.12 and theorem 4.5. □

Corollary. If V is an n-dimensional vector space, then only n-dimensional sub-
space of V is itself.
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The Dimensions of Nul A, Col A, and Row A.

Definition. Let A be a matrix.
• The rank of A is rank A = dim Col A.
• The nullity of A is nullity A = dim Nul A.

Observation.
• rank A is the number of pivot columns of A.
• nullity A is the number of free variables of Ax = 0.
• dim Row A = dim Col A = rank A.

Example. Let

A =


1 −1 −1 0 23 −3 −3 0 62 0 1 1 9
−1 7 0 6 −7


Then,

A ∼


1 −1 −1 0 20 2 3 1 50 0 −10 3 −200 0 0 0 0

 .

So rank A = 3 and nullity A = 2.

Theorem 4.14 (Rank-nullity theorem). Let A be an m × n matrix. Thenrank A + nullity A = n.

Proof. rank A is the number of pivot columns of A and nullity A is the number
of free variables of Ax = 0 which is the number of non-pivot columns of A. Thus,rank A + nullity A is the number of columns of A, which is n. □

Example. If A is a 9 × 12 matrix with nullity 4, what is the rank of A?

Solution. 12 − 4 = 8.

Example. Could a 7 × 12 matrix have nullity 4?

Solution. No. If A is a 7 × 12 matrix with nullity 4, then rank A = 12 − 4 = 8.
But Col A is a subspace of R7. So, rank A ≤ 7.

Example. Suppose you are given a homogeneous system of 30 equations in 32 vari-
ables and you have found two solutions that are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions.
Can you be certain that an associated nonhomogeneous system (with the same coeffi-
cients) has a solution?
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Solution. Yes. Let A be the coefficient matrix of the system. Then A is 30 × 32.
The given information implies that the two solutions are linearly independent and spanNul A. So nullity A = 2 and rank A = 30.
Since R30 is the only subspace of R30 whose dimension is 30, we have Col A = R30.
Then for any b, the nonhomogeneous equation Ax = b is consistent.

Invertible Matrix Theorem, revisited. We are going to extend the invertible matrix
theorem, theorem 2.8 (page 54 on the handwritten notes). We already stated (a)-(l),
now we add (m)-(q).

Theorem (The Invertible Matrix Theorem). Let A be an n × n matrix. The fol-
lowing are equivalent.

(a) A is an invertible matrix.
(b) A ∼ In.
(c) A has n pivot positions.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation x 7Ï Ax is one-to-one.
(g) The equation Ax = b has at least one solution for each b ∈ Rn.
(h) The columns of A span Rn.
(i) The linear transformation x 7Ï Ax is onto.
(j) There is an n × n matrix C such that CA = In.
(k) There is an n × n matrix D such that AD = In.
(l) AT is invertible.

(m) The columns of A form a basis for Rn.
(n) Col A = Rn.
(o) rank A = n.
(p) nullity A = 0.
(q) Nul A = {0}.

Proof. We have already proved the equivalence of (a)-(b)-(c)-. . . -(l).
We showed (b) ⇐Ñ (m) after defining the basis.
(h) ÍÑ (n) by definition of Col A.
(n) ÍÑ (o) by definition of rank A.
(o) ÍÑ (p) by the rank-nullity theorem.
(p) ÍÑ (q) because {0} is the only subspace with dimension 0.
(q) ÍÑ (d) by definition of Nul A. □

Inverse of an isomorphism. If T : V Ï W is an isomorphism, then we can define
its inverse. Since T is an isomorphism, for every w ∈ W , there is a unique v ∈ V such
that T(v) = w. Call T−1(w) := v. Then

T−1 : W Ï V
w 7Ï T−1(w)

is also an isomorphism.



26 4. VECTOR SPACES

Example. If V is a vector space with basis B = {b1, . . . , bn}, then the isomorphism
V Ï Rn

u 7Ï [u]B
has the inverse

Rn Ï Vc1
...

cn

 7Ï c1b1 + . . . + cnbn.

Rank-nullity Theorem for Linear Transformations. Now we generalize the rank-
nullity theorem for linear transformations between vector spaces.

Let V be a vector space with basis
B = {b1, . . . , bn}

and W be a vector space with basis
D = {d1, . . . , dm}

and
T : V Ï W

be a linear transformation.
Consider the transformation

T̃ : Rn Ï Rm

defined by
T̃([v]B) = [T(v)]D.

So, we have the following picture.

V W

Rn Rm

T

T̃

v T(v)

[v]B [T(v)]B

T

T̃

Remark. Call
TB : V Ï Rn

v 7Ï [v]B
and

TD : W Ï Rm

w 7Ï [w]D
for the coordinate mappings determined by B and D. Then T̃ is the composition

TD ◦ T ◦ T−1
B : Rn Ï Rm.

Exercise. Show the following.
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• T̃ is linear.
• dim Range(T) = dim Range(T̃).
• dim Ker(T) = dim Ker(T̃).

Let A be the standard matrix of the linear transformation T̃. Then A is m × n.
Also, dim Range(T) = dim Range(T̃) = dim Col A = rank Adim Ker(T) = dim Ker(T̃) = dim Nul A = nullity A.
Hence, by the rank-nullity theorem for matrices,dim Range(T) + dim Ker(T) = rank A + nullity A= n= dim V.

We showed the following.

Theorem (Rank-nullity theorem for linear transformations). Let V and W be vec-
tor spaces, and T : V Ï W be a linear transformation. Thendim Range(T) + dim Ker(T) = dim V.

Example. Let T : P2 Ï R3 be given by

T(p) = p(−1)
p(0)
p(1)

 .

If p = ax2 + bx + c, then p(−1) = a − b + c, p(0) = c, p(1) = a + b + c.
T(p) = 0 ⇐Ñ p(−1) = p(0) = p(1) = 0

⇐Ñ a = b = c = 0
⇐Ñ p = 0.

Hence Ker T = {0} ÍÑ dim Ker T = 0
ÍÑ dim Range T = dimP2 − 0 = 3
ÍÑ Range T = R3.

Example. Let T : Pn Ï Pn−1 be given by

T(p) = dp
dx

that is
T(a0 + a1x + a2x2 + a3x3 + . . . + anxn) = a1 + 2a2x + 3a3x2 + . . . + nanxn−1.

Then,
T(p) = 0 ⇐Ñ p ∈ P0.
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Hence

Ker T = P0 ÍÑ dim Ker T = 1
ÍÑ dim Range T = dimPn − 1 = n
ÍÑ Range T = Pn−1.

Isomorphic vector spaces.

Definition. The vector spaces V and W are called isomorphic if there is an iso-
morphism V Ï W . In this case, we denote

V ∼= W.

Exercise. Let T1 : V1 Ï V2 and T2 : V2 Ï V3 be isomorphisms. Show that the
composition

T2 ◦ T1 : V1 Ï V3
given by (T2 ◦ T1)(u) = T2(T1(u))
is also an isomorphism.

Observation. Let V and W be finite-dimensional vector spaces.

V ∼= W ⇐Ñ dim V = dim W.

Proof. If V ∼= W , then there is an isomorphism T : V Ï W . Since T is an
isomorphism, Ker T = {0} and Range T = W . Hence by rank-nullity theorem,

dim W = dim Range T = dim V − dim Ker T = dim V − 0 = dim V.

If dim V = dim W = n, then there is a basis B for V and a basis D for W such that
|B| = |D| = n. Consider the isomorphisms

TB : V Ï Rn

v 7Ï [v]B
and

TD : W Ï Rn

w 7Ï [w]D.

Then
T−1

D ◦ TB : V Ï W

is an isomorphism. □
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4.6. Change of Basis

We have seen in section 4.4, that given a basis B for an n-dimensional vector space
V , the associated coordinate mapping onto Rn gives a coordinate system for V . Now,
we will see that given two bases for V , how their coordinate systems are related.

Example. Let B = {b1, b2} and D = {d1, d2} be two bases for a vector space V ,
such that

b1 = 2d1 − d2 and b2 = −3d1 + 4d2.
Let u ∈ V . Suppose [u]B = [23]

. Find [u]D.

Solution. Since [u]B = [23]
, we have u = 2b1 + 3b2. Then

[u]D = [2b1 + 3b2]D= 2[b1]D + 3[b2]D
= 2 [ 2

−1] + 3 [
−34 ]

= [ 510]
.

Notice that we had [u]D = 2[b1]D + 3[b2]D
= [[b1]D [b2]D] [23]
= [[b1]D [b2]D] [u]B.

Theorem 4.15. Let B = {b1, . . . , bn} and D = {d1, . . . , dn} be bases for a vector
space V . Then there is a unique n × n matrix PDÎB such that[u]D = PDÎB[u]B
for all u ∈ V . This matrix is given by

PDÎB = [[b1]D [b2]D . . . [bn]D]
.

We call PDÎB the change-of-coordinates matrix from B to D.
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Proof. Consider the transformation
T̃ : Rn Ï Rn[u]B 7Ï [u]D.

Call
TB : V Ï Rn

u 7Ï [u]B
and

TD : V Ï Rn

u 7Ï [u]D
for the coordinate mappings determined by B and D. Then T̃ is the composition

TD ◦ T−1
B : Rn Ï Rn

since [u]B T−1
B7−−Ï u TD7−Ï [u]D. Then, T̃ is an isomorphism. Moreover, its standard matrix

is
PDÎB = [[b1]D [b2]D . . . [bn]D]

because
T̃(ei) = TD(T−1

B (ei)) = TD(bi) = [bi]D.
□

Example. Consider the bases B = {1 − 2x + x2, −1 + 3x − x2, 4x − x2} and
D = {1, 3x, 5x2} for V = P2. Then

[1 − 2x + x2]D =  1
−2/31/5


[−1 + 3x − x2]D =  −11

−1/5


[4x − x2]D =  04/3
−1/5


so

PDÎB =  1 −1 0
−2/3 1 4/31/5 −1/5 −1/5

 .

• Since {b1, . . . , bn} is linearly independent, so is {[b1]D, . . . , [bn]D}. Then the
square matrix PDÎB is invertible.

Multiplying [u]D = PDÎB[u]B with P−1
DÎB we have

P−1
DÎB[u]D = [u]B.

This shows the following.
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Observation. P−1
DÎB = PBÎD.

Change of Basis in Rn. If we take V = Rn and ε to be the standard basis {e1, . . . , en}
then PεÎB = PB.

We will look at the coordinate change between two non-standard bases of Rn.

Example. Let b1 = [
−1
−3]

, b2 = [
−35 ]

, d1 = [ 1
−7]

, d2 = [
−27 ]

. Then B = {b1, b2}
and D = {d1, d2} are two bases for R2. Find PDÎB.

Solution. We need to find [b1]D and [b2]D. For this we will solve the following
systems.

x1d1 + x2d2 = b1
y2d1 + y2d2 = b2

They correspond to the augmented matrices[
d1 d2 b1 ]

and
[

d1 d2 b2 ]
.

We can reduce these two simultaneously, by viewing this as the following augmented
matrix. [

d1 d2 b1 b2 ]
.

Then, [
d1 d2 b1 b2 ] = [ 1 −2 −1 −3

−7 7 −3 5 ]
∼

[ 1 0 13/7 11/70 1 10/7 16/7 ]
Thus [b1]D = [13/710/7]

and [b2]D = [11/716/7]
.

Hence
PDÎB = [[b1]D [b2]D] = [13/7 11/710/7 16/7]

.

We can generalize this solution technique as follows.

Observation. If B = {b1, . . . , bn} and D = {d1, . . . , dn} are two bases for Rn,
then [

d1 . . . dn b1 . . . bn
]

∼
[

In PDÎB
]

Example. Let b1 = −301
, b2 =  5

−26
, b3 = 797

, d1 =  12
−1

, d2 =  25
−2

,

d3 =  0
−31

. Then B = {b1, b2, b3} and D = {d1, d2, d3} are bases for R3. Find PDÎB.
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Solution. 1 2 0 −3 5 72 5 −3 0 −2 9
−1 −2 1 1 6 7

 ∼

 1 0 0 −3 −37 −670 1 0 0 21 370 0 1 −2 11 14
 .

Thus

PDÎB = −3 −37 −670 21 37
−2 11 14

 .



CHAPTER 3

Determinants

3.1. Introduction to Determinants

Recall from Theorem 4 of Section 2.2 that a 2 × 2 matrix is invertible if and only
if its determinant is nonzero. To extend this useful fact to larger matrices, we need a
definition for the determinant of an n × n matrix.

Consider n × n matrix A = [aij ] with a11 ̸= 0.

n=2 case. Recall that if A = [
a11 a12
a21 a22

]
, then det A = a11a22 − a12a21. Also we

showed that A is invertible if and only if det A ̸= 0. An alternative proof of this is the
following.

A ∼
[

a11 a12
a11a21 a11a22

]
∼

[
a11 a120 a11a22 − a12a21

] = Ã.

(Recall that we assumed a11 ̸= 0.)
Hence

A is invertible ⇐Ñ Ã is invertible
⇐Ñ a11a22 − a12a21 ̸= 0.

n=3 case. We have A = a11 a12 a13
a21 a22 a23
a31 a32 a33

, a11 ̸= 0.

A ∼

 a11 a12 a13
a11a21 a11a22 a11a23
a11a31 a11a32 a11a33


∼

a11 a12 a130 a11a22 − a12a21 a11a23 − a13a210 a11a32 − a12a31 a11a33 − a13a31
 = Ã.

Call B = [
a11a22 − a12a21 a11a23 − a13a21
a11a32 − a12a31 a11a33 − a13a31

]
.

33
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Hence
A is invertible ⇐Ñ Ã is invertible

⇐Ñ Ã has 3 pivots
⇐Ñ B has 2 pivots
⇐Ñ B is invertible
⇐Ñ det B ̸= 0.

We havedet B =(a11a22 − a12a21)(a11a33 − a13a31) − (a11a23 − a13a21)(a11a32 − a12a31)= + a211a22a33 − a11a13a22a31 − a11a12a21a33 + a12a13a21a31
− a211a23a32 + a11a12a23a31 + a11a13a21a32 − a12a13a21a31=a211(a22a33 − a23a32) − a11a12(a21a33 − a23a31) + a11a13(a21a32 − a22a31)=a11(a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)).

So det B
a11 = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11 det [
a22 a23
a32 a33

]
− a12 det [

a21 a23
a31 a33

] + a13 det [
a21 a22
a31 a32

]
.

Call
A11 = [

a22 a23
a32 a33

]
, A12 = [

a21 a23
a31 a33

]
, A13 = [

a21 a22
a31 a32

]
.

Thus
A is invertible ⇐Ñ det B ̸= 0

⇐Ñ a11 det A11 − a12 det A12 + a13 det A13 ̸= 0.
We define det A = a11 det A11 − a12 det A12 + a13 det A13.

General case.
Definition. For an n × n matrix A, we define Aij to be the (n − 1) × (n − 1) matrix

formed by deleting the i-th row and j-th column of A.

For instance, if

A =


1 −3 5 −70 −2 4 −8
−7 5 −3 26 3 0 −3


then

A32 = 1 5 −70 4 −86 0 −3
 .

Definition.
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• For n ≥ 2, the determinant of an n × n matrix A = [aij ] is defined asdet A = a11 det A11 − a12 det A12 + . . . + (−1)1+na1n det A1n

= n∑
j=1 (−1)1+ja1j det A1j .

• The determinant of a 1 × 1 matrix is defined as det [
a11] = a11.

Example.

det 1 5 02 0 −13 6 −1
 = 1 det [0 −16 −1]

− 5 det [2 −13 −1] + 0 det [2 03 6]
= 1 · 6 − 5 · 1= 1.

Definition. For an n × n matrix A, we define the (i, j)-cofactor of A to be
Cij = (−1)i+j det Aij .

With this notation, if A = [aij ],det A = a11C11 + a12C12 + . . . + a1nC1n

= n∑
j=1 a1jC1j .

This formula is called a cofactor expansion across the first row of A. The following
theorem says that the determined can be computed by a cofactor expansion across any
row or down any column.

Theorem 3.1. Let A = [aij ] be an n × n matrix. Then,det A = ai1Ci1 + ai2Ci2 + . . . + ainCin

and det A = a1jC1j + a2jC2j + . . . + anjCnj

for any i and j.

We omit the proof in our course. Curious reader may read the proof in the book
Linear algebra by Friedberg, Insel, Spence (4th edition), section 4.2, 4.3.

Example. Let A = 1 5 02 4 −10 −3 0
. By definition,

det A = 1 det [ 4 −1
−3 0 ]

− 5 det [2 −10 0 ] + 0 det [2 40 −3]
= 1 · (−3) − 5 · 0= −3.
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Using the cofactor expansion across third column,det A = 0 · C31 + (−3) · C32 + 0 · C33= (−3) · C32
= (−3)(−1)5 det [1 02 −1]
= (−3)(−1)(−1)= −3.

Definition. Let A be a square matrix.
• A is called upper triangular if all entries below the main diagonal are all 0.
• A is called lower triangular if all entries above the main diagonal are all 0.
• A is called triangular if it is upper triangular or lower triangular.

Example.

A =


2 5 −7 3 60 −3 4 −1 90 0 3 7 −80 0 0 −1 20 0 0 0 −4


is a (upper) triangular matrix.

Using the cofactor expansion across first column,

det A = 2 det


−3 4 −1 90 3 7 −80 0 −1 20 0 0 −4


= 2 · (−3) det 3 7 −80 −1 20 0 −4


= 2 · (−3) · 3 det [
−1 20 −4]

= 2 · (−3) · 3 · (−1) · (−4)= 72.

We can generalize this as follows.

Theorem 3.2. Determinant of a (square) triangular matrix, is the product of the
entries on the main diagonal.

Corollary. det In = 1.
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3.2. Properties of Determinants

Observation. Let A be an n × n matrix, with n ≥ 2. If A has two identical rows,
then det A = 0.

Proof. We will prove this by induction.

If n = 2, then A is of the form
[
a b
a b

]
. Then det A = ab − ab = 0.

Assume n ≥ 3 and assume that the statement is true for (n − 1) × (n − 1) matrices.
Let A be an n × n matrix, with rowr A = rows A. Let i ∈ {1, . . . , n} \ {r, s}. Then each
Aij is an (n − 1) × (n − 1) matrix having two identical rows. Then det Aij = 0. Then,
cofactor expansion across the i-th row of A gives det A = 0. □

Theorem 3.3. Let A be a square matrix.

(i) If a multiple of one row of A is added to another row to produce a matrix B,
then det B = det A.

(ii) If two rows of A are interchanged to produce B, then det B = − det A.
(iii) If one row of A is multiplied by c to produce B, then det B = c det A.

Proof. (i) Say A =


r1
...
ri
...
rj
...

rn


and B =



r1
...

ri + crj
...
rj
...

rn


. Looking at cofactor expansion

across the i-th row of B,

det B = det


r1
...

ri + crj
...
rj
...

rn


= det



r1
...
ri
...
rj
...

rn


+ c det



r1
...
rj
...
rj
...

rn


= det A + c · 0 = det A.
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(ii) Say A =


r1
...
ri
...
rj
...

rn


and B =



r1
...
rj
...
ri
...

rn


. Looking at cofactor expansion across the i-th

row of A, and j-th row of B, we have det B = − det A.

(iii) Say A =


r1
...
ri
...

rn

 and B =


r1
...

cri
...

rn

. Looking at cofactor expansion across the i-th

row of A and B, we have det B = c det A.
□

This theorem gives an efficient way to calculate determinants.

Example.

det  1 −4 2
−2 8 −9
−1 7 0

 = det  1 −4 2
−2 8 −90 3 2


= det 1 −4 20 0 −50 3 2


= − det 1 −4 20 3 20 0 −5


= (−1) · 1 · 3 · (−5) = 15.

Let A be an n × n matrix. It can be reduced to an echelon form U by row re-
placements and row interchanges, using the row reduction algorithm. If there are r
interchanges, then det A = (−1)r det U.
Since U is in echelon form, it is triangular, so det U is the product of its diagonal entries.
Therefore,

A is invertible ⇐Ñ U is invertible
⇐Ñ all pivots of U are non-zero
⇐Ñ all diagonal entries of U are non-zero
⇐Ñ det U ̸= 0
⇐Ñ det A ̸= 0.

We showed the following.
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Theorem 3.4. A square matrix A is invertible if and only if det A ̸= 0.

Example. Let A =


3 −1 2 −50 5 −3 −6
−6 7 −7 4
−5 −8 0 9

. Then,

det A = det


3 −1 2 −50 5 −3 −60 5 −3 −6
−5 −8 0 9

 = 0.

So A is not invertible.

The calculations in the next example combine the power of row operations with the
strategy of using zero entries in cofactor expansions.

Example.

det


0 1 2 −12 5 −7 30 3 6 2
−2 −5 4 −2

 = det


0 1 2 −12 5 −7 30 3 6 20 0 −3 1


= −2 det 1 2 −13 6 20 −3 1


= −2 det 1 2 −10 0 50 −3 1


= 2 det 1 2 −10 −3 10 0 5


= 2 · 1 · (−3) · 5= −30.

Column Operations. By theorem 3.1, the determined can be computed by a cofac-
tor expansion using rows or columns. This implies the following.

Theorem 3.5. If A is a square matrix, then det AT = det A.

This theorem implies that, to find determinant, instead of row operations we can
use column operations as well.
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Example.

det


1 2 3 41 2 5 00 3 6 1
−1 −2 −6 0

 = det


1 0 3 41 0 5 00 3 6 1
−1 0 −6 0


= −3 det  1 3 41 5 0

−1 −6 0


= (−3) · 4 det [ 1 5
−1 −6]

= (−3) · 4 · (−6 + 5)= 12.

Determinants and elementary matrices. Theorem 3.3 can be reformulated as fol-
lows.

If A is an n × n matrix and E is an n × n elementary matrix, then

det EA = (det E)(det A)
and

det E =


1 if E is a row replacement
−1 if E is an interchange
c if E is a scale by c.

Determinants and Matrix Products.

Observation. Let A and B be n × n matrices. Then AB is invertible if and only
if A and B are both invertible.

Proof. If A and B are invertible, then by theorem 2.6(ii), AB is invertible.
If AB is invertible, then there is an n × n matrix C such that (AB)C = In = C(AB).

Then BC is the inverse of A and CA is the inverse of B. □

Theorem 3.6. If A and B are n × n matrices, then

det AB = (det A)(det B).
Proof. If at least one of A and B is not invertible, then AB is not invertible. In

this case, det AB = 0 = det A det B.
Suppose both A and B are invertible. Since A is invertible,

A = E1E2 . . . Em
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for some elementary matrices E1, E2, . . . , Em. Then,det(AB) = det(E1E2 . . . EmB)= det E1 det(E2 . . . EmB)= det E1 det E2 det(E3 . . . EmB)
. . .= det E1 det E2 det E3 . . . det Em det B= det E1 det E2 . . . det(Em−1Em) det B
. . .= det(E1E2 . . . Em) det B= det A det B.

□

Example. Let A = [ 1 0
−1 3]

and B = [ 2 1
−7 −8]

. Then AB = [ 2 1
−23 −25]

.

We have det A = 3, det B = −9 and det AB = −27.

Corollary. If A is an invertible square matrix, then

det(A−1) = 1det A.

Proof. Since AA−1 = I, we have det A · det A−1 = det I = 1. □

3.3. Cramer’s Rule

For an n × n matrix A = [
a1 . . . an

]
and a vector b ∈ Rn, we define

Ai(b) = [
a1 . . . ai−1 b ai+1 . . . an

]
.

Theorem 3.7 (Cramer’s Rule). Let A be an invertible n × n matrix. For any b in

Rn, the unique solution x = x1
...

xn

 of Ax = b is given by

xi = det Ai(b)det A .

Example. Use Cramer’s rule to solve the system3x1 − 2x2 = 4
−4x1 + 5x2 = 18.

Solution. View the system as Ax = b, where A = [ 3 −2
−4 5 ]

, b = [ 418]
. Thendet A = 15 − 8 = 7 ̸= 0.
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We have A1(b) = [ 4 −218 5 ]
, A2(b) = [ 3 4

−4 18]
. Therefore

x1 = det A1(b)det A = 20 + 367 = 567 = 8
x2 = det A2(b)det A = 54 + 167 = 707 = 10.

Proof. If Ax = b, then

A · Ii(x) = A
[
e1 . . . ei−1 x ei+1 . . . en

]
= [

Ae1 . . . Aei−1 Ax Aei+1 . . . Aen
]

= [
a1 . . . ai−1 b ai+1 . . . an

]
= Ai(b).

Thus, det A · det Ii(x) = det Ai(b).
Calculating det Ii(x) across i-th row, we deduce

det Ii(x) = det [
e1 . . . ei−1 x ei+1 . . . en

] = xi.

Since A is invertible, det A ̸= 0. Hence

xi = det Ii(x) = det Ai(b)det A .

□

Example. Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution

2sx1 − 3x2 = 4
−6x1 + sx2 = 1.

Solution. View the system as Ax = b, where A = [ 2s −3
−6 s

]
, b = [41]

. Thendet A = 2s2 − 18 = 2(s − 3)(s + 3). So the system has a unique solution iff s ̸= ±3.

We have A1(b) = [4 −31 s

]
, A2(b) = [ 2s 4

−6 1]
. Therefore

x1 = det A1(b)det A = 4s + 32(s − 3)(s + 3)
x2 = det A2(b)det A = 2s + 242(s − 3)(s + 3) = s + 12(s − 3)(s + 3) .



3.3. CRAMER’S RULE 43

A formula for A−1. Let A be an invertible n × n matrix. The j-th column of A−1 is
a vector x such that

Ax = ej .
Then, by Cramer’s rule, the (i, j)-entry of A−1 is

xi = det Ai(ej )det A = (−1)i+j det Ajidet A = Cjidet A.

Hence

A−1 = 1det A


C11 C21 C31 . . . Cn1
C12 C22 C32 . . . Cn2
... ... ... ...

C1n C2n C3n . . . Cnn

 .

Definition. The adjugate (or classical adjoint) of an n × n matrix A is

adj A =


C11 C21 C31 . . . Cn1
C12 C22 C32 . . . Cn2
... ... ... ...

C1n C2n C3n . . . Cnn

 .

Theorem 3.8. If A is an invertible matrix, then

A−1 = 1det A adj A.

This also implies
A · adj A = det A · I.

Example. Let A =  1 2 3
−2 5 −37 −1 0

.

Then

C11 = det [ 5 −3
−1 0 ] = −3, C12 = − det [

−2 −37 0 ] = −21, C13 = det [
−2 57 −1] = −33,

C21 = − det [ 2 3
−1 0] = −3, C22 = det [1 37 0] = −21, C23 = − det [1 27 −1] = 15,

C31 = det [2 35 −3] = −21, C32 = − det [ 1 3
−2 −3] = −3, C33 = det [ 1 2

−2 5] = 9.

So,

adj A =  −3 −3 −21
−21 −21 −3
−33 15 9

 .
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Then

A · adj A =  1 2 3
−2 5 −37 −1 0

  −3 −3 −21
−21 −21 −3
−33 15 9

 = −144 0 00 −144 00 0 −144
 .

Hence det A = −144 and

A−1 = 1
−144

 −3 −3 −21
−21 −21 −3
−33 15 9

 =  1/48 1/48 7/487/48 7/48 1/4811/48 −5/48 −1/16
 .



CHAPTER 5

Eigenvalues and Eigenvectors

5.1. Eigenvectors and Eigenvalues

Example. Let A = [2 31 4]
and u = [11]

. Then

Au = [2 31 4] [11] = [55] = 5 [11] = 5u.

Definition. Let A be an n × n matrix.
• An eigenvector of A is a nonzero vector x such that Ax = λx for some scalar

λ.
• A scalar λ is called an eigenvalue of A if there is a nonzero vector x such that

Ax = λx; such an x is called an eigenvector corresponding to λ.

Example. Let A = [2 31 4]
and u = [11]

as in the example above. Then

Au = 5u
so u is an eigenvector corresponding to an eigenvalue 5.

Let v = [ 2
−3]

. Then

Av = [2 31 4] [ 2
−3] = [

−5
−10]

̸= λ
[ 2
−3]

for any λ, so v is not an eigenvector of A.

Example. Show that 7 is an eigenvalue of the matrix A = [1 65 2]
and find the

corresponding eigenvectors.

Solution. 7 is an eigenvalue of A if and only if the equation
Ax = 7x

has a non-trivial solution. This is equivalent to Ax − 7x = 0 which is(A − 7I)x = 0.
To solve this homogeneous equation, form the matrix

A − 7I = [1 65 2]
−

[7 00 7] = [
−6 65 −5]

.

45
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The columns of A−7I are linearly dependent, so (A−7I)x = 0 has nontrivial solutions.
Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations:

A − 7I = [
−6 6 05 −5 0 ]

∼
[ 1 −1 00 0 0 ]

.

The general solution has the form x2
[11]

. Each vector of this form with x2 ̸= 0 is an

eigenvector corresponding to λ = 7.

The idea here applies to any square matrix. λ is an eigenvalue of a square matrix
A if and only if Ax = λx has a non-trivial solution, that is (A − λI)x = Ax − λx = 0
has a non-trivial solution.

Observation. λ is an eigenvalue of a square matrix A if and only if the equation(A − λI)x = 0
has a non-trivial solution.

Eigenspace. We call eigenspace for the solution set of (A − λI)x = 0.

Definition. Let A be a square matrix and λ be an eigenvalue of A. The null space
of the matrix A − λI is called the eigenspace of A corresponding to λ.

Note that if A is n × n, the eigenspace is a subspace of Rn.
The eigenspace consists of the zero vector and all the eigenvectors corresponding

to λ.
eigenspace of A corresponding to λ = {0} ∪ {eigenvectors of A corresponding to λ}

Example. In the example above, where A = [1 65 2]
and λ = 7, the eigenspace of

A corresponding to λ is {
x2

[11] : x2 ∈ R
} = Span {[11]}

.

Example. Let A = 3 2 31 4 31 2 5
. An eigenvalue of A is 2. Find a basis for the

corresponding eigenspace.

Solution. We need to solve (A − 2I)x = 0.[
A − 2I 0 ]

∼

 1 2 3 01 2 3 01 2 3 0
 ∼

 1 2 3 00 0 0 00 0 0 0
 .

The solutions are given by x1 + 2x2 + 3x3 = 0, that is

x = x1
x2
x3

 = −2x2 − 3x3
x2
x3

 = x2
−210

 + x3
−301

 ,
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so the corresponding eigenspace isx2
−210

 + x3
−301

 : x2, x3 ∈ R

 = Span


−210
 ,

−301
 .

Thus 
−210

 ,

−301


is a basis for the corresponding eigenspace.

5.2. The Characteristic Equation

Let A be a square matrix. We can continue our reasioning as follows.
λ is an eigenvalue of A ⇐Ñ Ax = λx has a non-trivial solution

⇐Ñ (A − λI)x = 0 has a non-trivial solution
⇐Ñ A − λI is not invertible
⇐Ñ det(A − λI) = 0.

Definition. For a square matrix A the equation det(A − λI) = 0 is called the
characteristic equation of A.

Observation. λ is an eigenvalue of a square matrix A if and only if λ satisfies the
characteristic equation det(A − λI) = 0.

Example. Find the eigenvalues of A = [2 33 −6]
.

Solution. det(A − λI) = det [2 − λ 33 −6 − λ

]
= (2 − λ)(−6 − λ) − 9= λ2 − 4λ − 21= (λ − 7)(λ + 3).

Thus the eigenvalues of A are 7 and −3.

Example. Find the eigenvalues of A = 3 3 −10 2 −60 0 −1
.

Solution.

det(A − λI) = det 3 − λ 3 −10 2 − λ −60 0 −1 − λ


= (3 − λ)(2 − λ)(−1 − λ).
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Thus the eigenvalues of A are 3, 2 and −1.

Theorem 5.1. The eigenvalues of a triangular matrix are the entries on its main
diagonal.

Proof. Let A be a triangular matrix with diagonal entries a11, . . . , ann. Then A−λI
is triangular matrix with diagonal entries a11 − λ, . . . , ann − λ.det(A − Iλ) = (a11 − λ) . . . (ann − λ)

□

Example. The eigenvalues of

−2 5 10 5 30 0 5
 are −2 and 5.

Example. The eigenvalues of

3 4 −20 0 50 0 9
 are 3, 0 and 9.

What does it mean for a matrix A to have an eigenvalue of 0, as in this example?0 is an eigenvalue of A ⇐Ñ Ax = 0 has a non-trivial solution
⇐Ñ det A = 0
⇐Ñ A is not invertible.

This adds one more statement to the invertible matrix theorem.

Theorem (The Invertible Matrix Theorem). Let A be an n × n matrix. The fol-
lowing are equivalent.

(a) A is an invertible matrix.
(b) A ∼ In.
(c) A has n pivot positions.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
(f) The linear transformation x 7Ï Ax is one-to-one.
(g) The equation Ax = b has at least one solution for each b ∈ Rn.
(h) The columns of A span Rn.
(i) The linear transformation x 7Ï Ax is onto.
(j) There is an n × n matrix C such that CA = In.
(k) There is an n × n matrix D such that AD = In.
(l) AT is invertible.

(m) The columns of A form a basis for Rn.
(n) Col A = Rn.
(o) rank A = n.
(p) nullity A = 0.
(q) Nul A = {0}.
(r) The number 0 is not an eigenvalue of A.
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Characteristic polynomial.

Example. Find the characteristic equation of A =


4 3 −1 30 3 0 50 0 −1 80 0 0 3
.

Solution.det(A − λI) = (4 − λ)(3 − λ)(−1 − λ)(3 − λ) = (4 − λ)(3 − λ)2(−1 − λ).
So the characteristic equation of A is(4 − λ)(3 − λ)2(−1 − λ) = 0
or (λ − 4)(λ − 3)2(λ + 1) = 0.
Expanding the product, we can also write

λ4 − 9λ3 + 23λ2 − 3λ − 36 = 0.
Notice that det(A−λI) is a polynomial in λ. It is called the characteristic polynomial

of A. If A is n × n, then its characteristic polynomial is of degree n.
In the example above, the characteristic polynomial is (λ − 4)(λ − 3)2(λ + 1). We say

that the eigenvalue 3 has multiplicty 2 because (λ − 3) occurs two times as a factor. In
general, the (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of
the characteristic equation.

Example. If the characteristic polynomial of a 6 × 6 matrix is λ6 − 2λ5 − 15λ4, find
the eigenvalues and their multiplicities.

Solution.
λ6 − 2λ5 − 15λ4 = λ4(λ2 − 2λ − 15) = λ4(λ − 5)(λ + 3).

The eigenvalues are 0 (multiplicity 4), 5 (multiplicity 1) and −3 (multiplicity 1).

Similarity. Let A and B be n × n matrices. A is called similar to B if there is an
invertible n × n matrix P such that

P−1AP = B
or equivalently, A = PBP−1.

If such P exists, then letting Q = P−1, we have Q−1BQ = A, so B is also similar to
A. In short, we say that A and B are similar.

Definition. Let A and B be n × n matrices. A and B are similar if there is an
invertible n × n matrix P such that

P−1AP = B.
A linear transformation of the form

Mn×n Ï Mn×n

A 7Ï P−1AP
is called a similarity transformation.
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Theorem 5.4. Let A and B be n × n matrices. If they are similar, then they have
the same characteristic polynomial and hence the same eigenvalues (with the same
multiplicities).

Proof. If P−1AP = B, then
B − λI = P−1AP − λI= P−1AP − λP−1P= P−1(A − λI)P.

Then det(B − λI) = det(P−1) det(A − λI) det P = det(A − λI).
□

Remark.
• The matrices [2 10 2]

and
[2 00 2]

are not similar even though they have the same eigenvalues.
• Similarity is not the same as row equivalence. The matrices[1 00 1]

and
[1 01 1]

are row equivalent but not similar (since their eigenvalues are not the same).

5.3. Diagonalization

Powers of a diagonal matrices are easy to compute as in the following example.

Example. If
D = [2 00 3]

,

then
D2 = [2 00 3] [2 00 3] = [22 00 32

]
and

D3 = DD2 = [2 00 3] [22 00 32
] = [23 00 33

]
.

In general,

Dk = [2k 00 3k

]
for k ≥ 1.

If A = PDP−1 for some diagonal matrix D and invertible matrix P, then
A2 = PDP−1PDP−1 = PDDP−1 = PD2P−1

and
A3 = AA2 = PDP−1PD2P−1 = PDD2P−1 = PD3P−1.
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In general,
Ak = PDkP−1.

Definition. A square matrix A is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if

A = PDP−1
for some invertible matrix P and some diagonal matrix D.

Example. Consider P = [ 1 −1
−2 3 ]

and D = [7 00 4]
.

Then, P−1 = [3 12 1]
and A = PDP−1 = [ 13 3

−18 −2]
is diagonalizable. We have

Ak = PDkP−1
= [ 1 −1

−2 3 ] [7k 00 4k

] [3 12 1]
= [ 3 · 7k − 2 · 4k 7k − 4k

−6 · 7k + 6 · 4k −2 · 7k + 3 · 4k

]
.

Theorem 5.5 (The Diagonalization Theorem). An n×n matrix A is diagonalizable
if and only if A has n linearly independent eigenvectors.

In this case, if v1, v2, . . . , vn are eigenvectors of A corresponding to the eigenvalues
λ1, λ2, . . . , λn, respectively, then A = PDP−1, where

P = [
v1 v2 . . . vn

]
and

D =


λ1 0 . . . 00 λ2 . . . 0
... ... ...0 0 . . . λn

 .

In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of Rn . We call such a basis an eigenvector basis of Rn.

Example. Diagonalize the following matrix, if possible.

A =  5 −8 12
−8 5 −12
−8 8 −15

 .

That is, find an invertible matrix P and a diagonal matrix D such that A = PDP−1.
Solution.
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(1) Find the eigenvalues of A: We have

det(A − λI) = det 5 − λ −8 12
−8 5 − λ −12
−8 8 −15 − λ


= det  5 − λ −8 12

−8 5 − λ −12
−3 − λ 0 −3 − λ


= (−3 − λ) det [

−8 125 − λ −12] + (−3 − λ) det [5 − λ −8
−8 5 − λ

]
= (−3 − λ)(96 − 60 + 12λ) + (−3 − λ)(λ2 − 10λ + 25 − 64)= (−3 − λ)(12λ + 36) + (−3 − λ)(λ2 − 10λ − 39)= (−3 − λ)(λ2 + 2λ − 3)= (−3 − λ)(λ + 3)(λ − 1)= −(λ + 3)2(λ − 1).

So the eigenvalues are λ1 = −3, λ2 = −3 and λ3 = 1.
(2) Find three linearly independent eigenvectors of A: For λ1 = λ2 = −3, we

need to solve

[
A + 3I 0 ] =  8 −8 12 0

−8 8 −12 0
−8 8 −12 0


∼

 1 −1 3/2 00 0 0 00 0 0 0
 .

Its solution set is Span


110
 ,

−302
. Call

v1 = 110
 , v2 = −302

 .

So {v1, v2} is a basis for the eigenspace corresponding to λ1 = λ2 = −3.
For λ3 = 1, we need to solve

[
A − I 0 ] =  4 −8 12 0

−8 4 −12 0
−8 8 −16 0


∼

 1 0 1 00 1 −1 00 0 0 0
 .
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Its solution set is Span


−111
. Call

v3 = −111
 .

So {v3} is a basis for the eigenspace corresponding to λ3 = 1.
One can check that {v1, v2, v3} is linearly independent. Thus A has 3 lin-

early independent eigenvectors. Hence, A is diagonalizable.
(3) Construct P:

P = [
v1 v2 v3] = 1 −3 −11 0 10 2 1

 .

(4) Construct D:

D = λ1 0 00 λ2 00 0 λ3
 = −3 0 00 −3 00 0 1

 .

(5) Check: You can check that

AP =  5 −8 12
−8 5 −12
−8 8 −15

 1 −3 −11 0 10 2 1
 = −3 9 −1

−3 0 10 −6 1


and

PD = 1 −3 −11 0 10 2 1
 −3 0 00 −3 00 0 1

 = −3 9 −1
−3 0 10 −6 1

 .

So, AP = PD and therefore A = PDP−1.
Proof of theorem 5.5. (Ñ): If A is diagonalizable, then A = PDP−1 for some

invertible matrix P and some diagonal matrix D. Then AP = PD. Call
P = [

v1 v2 . . . vn
]

and

D =


λ1 0 . . . 00 λ2 . . . 0
... ... ...0 0 . . . λn

 .

Then
AP = [

Av1 Av2 . . . Avn
]

and
PD = [

λ1v1 λ2v2 . . . λnvn
]

.
Thus

Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn.
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Hence v1, v2, . . . , vn are eigenvectors of A corresponding to the eigenvalues λ1, λ2, . . . , λn,
respectively. Since P is invertible, {v1, v2, . . . , vn} is linearly independent.

(⇐): Let v1, v2, . . . , vn be linearly independent eigenvectors of A corresponding to
the eigenvalues λ1, λ2, . . . , λn, respectively. Then

P := [
v1 v2 . . . vn

]
is invertible. Let

D :=


λ1 0 . . . 00 λ2 . . . 0
... ... ...0 0 . . . λn

 .

Then
AP = [

Av1 Av2 . . . Avn
] = [

λ1v1 λ2v2 . . . λnvn
] = PD.

Since P is invertible, A = PDP−1. □

Matrices Whose Eigenvalues Are Distinct.

Theorem 5.2. If v1, v2, . . . , vr are eigenvectors corresponding to distinct eigenvalues
λ1, λ2, . . . , λr of an n × n matrix A, then the set {v1, v2, . . . , vr} is linearly independent.

Proof.
• First, we will show that:

{v1, v2, . . . , vr} is linearly dependent ÍÑ {v1, v2, . . . , vr−1} is linearly dependent.

Assume that {v1, v2, . . . , vr} is linearly dependent. Then

x1v1 + x2v2 + . . . + xrvr = 0
for some x1, x2, . . . , xr ∈ R, not all zero, then

x1Av1 + x2Av2 + . . . + xrAvr = A0 = 0
so

x1λ1v1 + x2λ2v2 + . . . + xrλrvr = 0.
First and the last equations imply that

x1(λ1 − λr)v1 + x2(λ2 − λr)v2 + . . . + xr−1(λr−1 − λr)vr−1 = 0.

If {v1, v2, . . . , vr−1} is linearly independent, then for each 1 ≤ i ≤ r − 1, we
have xi(λi − λr) = 0. Since eigenvalues are distinct, λi − λr ̸= 0, so

x1 = x2 = . . . = xr−1 = 0.

Then xr ̸= 0 and xrvr = 0. Then vr = 0. But vr ̸= 0 since vr is an eigenvector.
Thus we get a contradiction So {v1, v2, . . . , vr−1} is linearly dependent.
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• Continuing the same argument again and again:

{v1, v2, . . . , vr} is linearly dependent ÍÑ {v1, v2, . . . , vr−1} is linearly dependent
ÍÑ {v1, v2, . . . , vr−2} is linearly dependent
ÍÑ {v1, v2, . . . , vr−3} is linearly dependent
...

ÍÑ {v1, v2} is linearly dependent
ÍÑ {v1} is linearly dependent
ÍÑ v1 = 0.

This is a contradiction, since v1 is an eigenvector. Thus {v1, v2, . . . , vr} is
linearly independent.

□

By theorem 5.5, this implies the following.

Theorem 5.6. An n × n matrix with n distinct eigenvalues is diagonalizable.

Example. Determine if the following matrix is diagonalizable.

A = 2 −1 −30 0 10 0 −7
 .

Solution. Eigenvalues of A are 2, 0 and −7. Since A is a 3 × 3 matrix with 3
distinct eigenvalues, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct.

Example. Diagonalize the following matrix, if possible.

A =  2 4 3
−4 −6 −33 3 1

 .

Solution. det(A − λI) = −(λ − 1)(λ + 2)2. So the eigenvalues of A are 1, −2 and
−2.

One can calculate that 
 1

−11


is a basis for the eigenspace corresponding to λ1 = 1 and
−110


is a basis for the eigenspace corresponding to λ2 = λ3 = −2.
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Call v1 =  1
−11

 and v2 = −110
. Any other eigenvector of A is either multiple of

v1 or v2. Hence it is impossible to construct a basis of R3 using eigenvectors of A. Thus
A is not diagonalizable by theorem 5.5.

Theorem 5.7. Let A be an n×n matrix whose distinct eigenvalues are λ1, λ2, . . . , λr.
(i) For 1 ≤ i ≤ r,dim(eigenspace for λi) ≤ multiplicity of the eigenvalue λi.

(ii) The following are equivalent.
(a) A is diagonalizable
(b) the sum of the dimensions of the eigenspaces equals n
(c) the characteristic polynomial factors completely into linear factors and for1 ≤ i ≤ r,dim(eigenspace for λi) = multiplicity of the eigenvalue λi.

(iii) If A is diagonalizable and Bi is a basis for the eigenspace corresponding to λi
for each i, then the total collection of vectors in the sets B1, . . . , Br forms an
eigenvector basis for Rn.

We omit the proof in our course. Curious reader may read the proof in the book
Linear algebra by Friedberg, Insel, Spence (4th edition), section 5.2.

Example. Diagonalize the following matrix, if possible.

A =


5 0 0 00 5 0 01 4 −3 0
−1 −2 0 −3

 .

Solution. det(A − λI) = (λ − 5)2(λ + 3)2. So the eigenvalues of A are 5, 5, −3, −3.
One can calculate that

v1 =


−8410
 , v2 =


−16401


form a basis for the eigenspace corresponding to λ1 = λ2 = 5 and

v3 =


0010
 , v4 =


0001


form a basis for the eigenspace corresponding to λ3 = λ4 = −3.
Then by theorem 5.7, A is diagonalizable.
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Therefore, putting

P = [
v1 v2 v3 v4] =


−8 −16 0 04 4 0 01 0 1 00 1 0 1

 .

and

D =


λ1 0 0 00 λ2 0 00 0 λ3 00 0 0 λ4

 =


5 0 0 00 5 0 00 0 −3 00 0 0 −3


we have
A = PDP−1.



CHAPTER 6

Orthogonality

6.1. Inner Product, Length, and Orthogonality

The Inner Product.

Definition. Let

u =


u1
u2
...

un

 , v =


v1
v2
...

vn

 ∈ Rn.

The standard inner product (or dot product) of u and v is defined as

uTv = [
u1 u2 . . . un

] 
v1
v2
...

vn

 = u1v1 + . . . + unvn

and denoted as u · v.

Example. 62
−7

 ·

 3
−4
−1

 = 6 · 3 + 2 · (−4) + (−7) · (−1) = 18 − 8 + 7 = 17.

Following results follow directly from the definition.

Theorem 6.1. Let u, v, w ∈ Rn and c ∈ R. Then
(a) u · v = v · u
(b) (u + w) · v = u · v + w · v
(c) (cu) · v = c(u · v)
(d) u · u ≥ 0
(e) u · u = 0 ⇐Ñ u = 0.

(b) and (c) implies the following.

Corollary. Let v, ui ∈ Rn and ci ∈ R. Then(c1u1 + . . . + cmum) · v = c1(u1 · v) + . . . cm(um · v).
58
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The Length of a Vector.

Definition. The length (or norm) of v =


v1
v2
...

vn

 is the nonnegative scalar ∥v∥

defined by
∥v∥ := √

v · v = √
v21 + v22 + . . . + v2

n.

Example. If v = [
a
b

]
∈ R2,

∥v∥ = √
a2 + b2.

Observation. For any c ∈ R and v ∈ Rn,
∥cv∥ = |c|∥v∥.

Proof.
∥cv∥2 = (cv) · (cv) = c2(v · v) = c2∥v∥2

ÍÑ ∥cv∥ = |c|∥v∥.
□

Definition. A vector whose length is 1 is called a unit vector.
If v is a non-zero vector, the length of

u = 1
∥v∥v

is
∥u∥ = 1

∥v∥∥v∥ = 1.

The process of creating u from v is called normalizing v. We say that u is the unit
vector in the same direction as v.

Example. Find a unit vector u in the same direction as v =


−421
−20

.
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Solution.

∥v∥ = √(−4)2 + 22 + 12 + (−2)2 + 02 = √16 + 4 + 1 + 4 + 0 = √25 = 5.

Then

u = 1
∥v∥v = 15


−421
−20

 =


−4/52/51/5
−2/50

 .

Example. Let W = Span {[5/121 ]}
. Find a unit vector u such that {u} is a basis

for W .

Solution. We have W = Span {[5/121 ]} = Span {[ 512]}
. Call v = [ 512]

. Nor-
malizing v, we have

u = 1
∥v∥v = 113

[ 512] = [ 5/1312/13]
.

W = Span{v} = Span{u}, so {u} is a basis for W .

Another unit vector giving a basis for W is
[

−5/13
−12/13]

.

Distance.

Definition. Let u, v ∈ Rn. The distance between u and v is defined asdist(u, v) = ∥u − v∥.

Example. Find the distance between u = (2, 3) and v = (−1, 5).
Solution.

u − v = [23]
−

[
−15 ] = [ 3

−2]
.

So, dist(u, v) = ∥u − v∥ = √32 + (−2)2 = √13.

Orthogonal Vectors. Consider the following vectors u, v.
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Recall from highschool that
u and v are perpendicular ⇐Ñ dist(u, v) = dist(u, −v).

We have dist(u, v)2 = ∥u − v∥2= (u − v) · (u − v)= u · u − u · v − v · u + v · v= ∥u∥2 + ∥v∥2 − 2u · v.
and dist(u, −v)2 = ∥u − (−v)∥2

= ∥u + v∥2= (u + v) · (u + v)= u · u + u · v + v · u + v · v= ∥u∥2 + ∥v∥2 + 2u · v.
Thus

u and v are perpendicular ⇐Ñ dist(u, v) = dist(u, −v)
⇐Ñ ∥u∥2 + ∥v∥2 − 2u · v = ∥u∥2 + ∥v∥2 + 2u · v
⇐Ñ 4u · v = 0
⇐Ñ u · v = 0.

We call ’orthogonal’ instead of ’perpendicular’ in linear algebra.

Definition. Two vectors u and v in Rn are called orthogonal (to each other) if
u · v = 0.

By the calculations above,
u and v are orthogonal ⇐Ñ u · v = 0

⇐Ñ ∥u + v∥2 = ∥u∥2 + ∥v∥2.
This is the famous The Pythagorean Theorem.

Theorem 6.2 (The Pythagorean Theorem). Two vectors u and v are orthogonal
if and only if ∥u + v∥2 = ∥u∥2 + ∥v∥2.

Orthogonal Complements.

Definition. If a vector v is orthogonal to every vector in a subspace S of Rn, then
v is said to be orthogonal to S.

Definition. Let S be a subspace of Rn. The orthogonal complement of S, denoted
by S⊥, is the subset of Rn consisting of all vectors that are orthogonal to S, that is

S⊥ = {v ∈ Rn | v · u = 0, ∀u ∈ S}.
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Example. In R2, two orthogonal lines through 0 are orthogonal complements of
each other.

Example. In R3, a plane W through 0 and line L through 0 that is perpendicular
to W are orthogonal complements of each other.

Example. Let

S = Span


 12
−1

 .

Then,

S⊥ =


x1
x2
x3

 |

x1
x2
x3

 ·

c

 12
−1

 = 0, ∀c ∈ R


=


x1

x2
x3

 | c(x1 + 2x2 − x3) = 0, ∀c ∈ R


=


x1

x2
x3

 | x1 + 2x2 − x3 = 0


=


 x1
x2

x1 + 2x2
 | x1, x2 ∈ R


= Span


101

 ,

012
 .

Observation. Let S = Span{v1, . . . , vm}.
u ∈ S⊥ ⇐Ñ u · vi = 0, ∀i ∈ {1, . . . , m}.

Observation. Let S be a subspace of Rn. Then S⊥ is a subspace of Rn.
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Proof of this observation is left as an exercise.
Theorem 6.3. Let A be an m × n matrix. Then(Row A)⊥ = Nul A.

Example. Let

A = 1 0 10 1 11 1 2
 .

Then,

Row A = Span


101
 ,

011


and

Nul A = Span


 11
−1

 .

Proof. Call ri for the r-th row of A. Then Row A = Span{r1, . . . , rm}. Hence
v ∈ Nul A ⇐Ñ Av = 0

⇐Ñ ri · v = 0, ∀i ∈ {1, . . . , m}
⇐Ñ u · v = 0, ∀u ∈ Row A
⇐Ñ v ∈ (Row A)⊥.

□

Corollary. (Col A)⊥ = Nul AT .

6.2. Orthogonal Sets

Definition. A set of vectors {v1, . . . , vm} in Rn consisting of nonzero vectors is
called an orthogonal set if each pair of distinct vectors from the set is orthogonal, that
is, if

vi · vj = 0
whenever i ̸= j.

Example. Let

v1 = 311
 , v2 =  1

−2
−1

 , v3 = −1
−47

 .

Then
v1 · v2 = 3 · 1 + 1 · (−2) + 1 · (−1) = 3 − 2 − 1 = 0
v1 · v3 = 3 · (−1) + 1 · (−4) + 1 · 7 = −3 − 4 + 7 = 0
v2 · v3 = 1 · (−1) + (−2) · (−4) + (−1) · 7 = −1 + 8 − 7 = 0.

Hence {v1, v2, v3} is an orthogonal set.
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Theorem 6.4. Any orthongal set is linearly independent.

Proof. Let {v1, . . . , vm} be an orthogonal set. If
c1v1 + . . . + cmvm = 0,

then for any i, 0 = 0 · vi = (c1v1 + . . . + cmvm) · vi= c1(v1 · vi) + . . . + cm(vm · vi)= ci(vi · vi).
Since vi ̸= 0, we have vi · vi ̸= 0. Then ci = 0. □

Corollary.
(i) An orthongal set S = {v1, . . . , vm} in Rn is a basis for Span S.

(ii) An orthongal set S = {v1, . . . , vn} in Rn is a basis for Rn.

Remark. A linearly independent set does not have to be orthogonal.

Example.


311

 ,

 1
−2
−1

 ,

−1
−47

 is orthogonal, so it is also linearly independent.

Example.


100

 ,

110
 ,

111
 is linearly independent, but not orthogonal.

Definition. An orthogonal basis for a subspace W of Rn is a basis for W that is
also an orthogonal set.

Example. The standard basis {e1, . . . , en} is an orthogonal basis for Rn.

Example.


311

 ,

 1
−2
−1

 ,

−1
−47

 is an orthogonal basis for R3.

Theorem 6.5. Let {v1, . . . , vm} be an orthogonal basis for a subspace W of Rn. For
every w ∈ W , if

w = c1v1 + . . . + cmvm,
then

ci = w · vi

vi · vi
for all i = 1, . . . , m.

The theorem says the following. If B = {v1, . . . , vm} is an orthogonal basis for W ,
then for every w ∈ W ,

w = w · v1
v1 · v1 v1 + w · v2

v2 · v2 v2 + . . . + w · vm

vm · vm
vm.
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So

[w]B =


w·v1
v1·v1w·v2
v2·v2...
w·vm
vm·vm

 .

Proof. If
w = c1v1 + . . . + cmvm,

then by applying inner product with vi

w · vi = ci(vi · vi).
□

Example. Let

v1 = 311
 , v2 =  1

−2
−1

 , v3 = −1
−47


as in the example above. Then S = {v1, v2, v3} is an orthogonal basis for R3.
Let us express the vector w =  62

−1
 as a linear combination of the vectors in S.

w · v1 = 19, w · v2 = 3, w · v3 = −21,
v1 · v1 = 11, v2 · v2 = 6, v3 · v3 = 66.

Thus
w = w · v1

v1 · v1 v1 + w · v2
v2 · v2 v2 + w · v3

v3 · v3 v3
= 1911v1 + 36v2 + −2166 v3
= 1911v1 + 12v2 + −722 v3.

Orthonormal Sets.
Definition.

• An orthogonal set of unit vectors is called an orthonormal set.
• An orthonormal basis for a subspace W of Rn is a basis for W that is also an

orthonormal set.

Example. The standard basis {e1, . . . , en} is an orthonormal basis for Rn.

Example.


3/

√111/
√111/
√11

 ,

 1/
√6

−2/
√6

−1/
√6

 ,

−1/
√66

−4/
√667/

√66
 is an orthonormal basis for R3.

Theorem 6.6. An m × n matrix U has orthonormal columns if and only if
UTU = In.
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Proof. Call U = [
u1 u2 . . . un

]
. We have

UTU =


uT1
uT2
...

uT
n

 [
u1 u2 . . . un

]

=


uT1 u1 uT1 u2 . . . uT1 un
uT2 u1 uT2 u2 . . . uT2 un

... ... ... ...
uT

nu1 uT
nu2 . . . uT

nun



=


u1 · u1 u1 · u2 . . . u1 · un
u2 · u1 u2 · u2 . . . u2 · un

... ... ... ...
un · u1 un · u2 . . . un · un

 .

Thus
U has orthonormal columns ⇐Ñ {u1, . . . , un} is an orthonormal set

⇐Ñ ui · uj = 0, when i ̸= j, and ui · ui = 1
⇐Ñ UTU = In.

□

Example. Let U = 1/
√2 2/31/
√2 −2/30 1/3

. Then

UTU = [1/
√2 1/

√2 02/3 −2/3 1/3
] 1/

√2 2/31/
√2 −2/30 1/3

 = [1 00 1]
so U has orthonormal columns.

Theorem 6.7. Let U be an m×n matrix with orthonormal columns, and x, y ∈ Rn.
Then (Ux) · (Uy) = x · y.

Proof. (Ux) · (Uy) = (Ux)T (Uy) = xTUTUy = xTy = x · y. □

Taking x = y in the theorem above:

Corollary. ∥Ux∥ = ∥x∥.

6.4. The Gram Schmidt Process

The Gram–Schmidt process is a simple algorithm for producing an orthogonal basis
for any nontrivial subspace of Rn.

Let {v1, v2, . . . , vm} be a basis for a nontrivial subspace W of Rn. We would like to
find an orthogonal basis

{u1, u2, . . . um}
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for
W = Span{v1, v2, . . . , vm}.

• First, let us find an orthogonal basis

{u1, u2}
for

W2 = Span{v1, v2}.
Set

u1 = v1.
Choose u2 based on

v2 = α1u1 + u2.
Now

u1 and u2 are orthongal ⇐Ñ u2 · u1 = 0
⇐Ñ v2 · u1 = α1u1 · u1
⇐Ñ α1 = v2 · u1

u1 · u1 .

Hence we shall choose
α1 = v2 · u1

u1 · u1
and

u2 = v2 − v2 · u1
u1 · u1 u1.

Thus:

Observation. Taking

u1 = v1, u2 = v2 − v2 · u1
u1 · u1 u1

the set {u1, u2} is an orthogonal basis for W2 = Span{v1, v2}.

Illustration of how we choose u2:
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• Now, suppose we have an orthogonal basis
{u1, . . . , uq−1}

for
Wq−1 = Span{v1, . . . , vq−1}.

Let us find an orthogonal basis
{u1, . . . , uq−1, uq}

for
Wq = Span{v1, . . . , vq−1, vq}.

Choose uq based on
vq = α1u1 + α2u2 + . . . + αq−1uq−1 + uq.

Now for each j ∈ {1, . . . , q − 1},
uq is orthogonal to uj ⇐Ñ uq · uj = 0

⇐Ñ vq · uj = αjuj · uj

⇐Ñ αj = vq · uj

uj · uj
.

Hence we shall choose
αj = vq · uj

uj · uj
for j = 1, . . . , q − 1

and
uq = vq − vq · u1

u1 · u1 u1 − vq · u2
u2 · u2 u2 − . . . − vq · uq−1

uq−1 · uq−1 uq−1.
Thus

{u1, . . . , uq}
is an orthogonal basis for

Wq = Span{v1, . . . , vq}.
We showed the following.

Theorem 6.11 (The Gram–Schmidt Process). Let W be a subspace of Rn with a
basis {v1, . . . , vm}. Then the set {u1, . . . , um} defined by

u1 = v1
and

uq = vq − vq · u1
u1 · u1 u1 − vq · u2

u2 · u2 u2 − . . . − vq · uq−1
uq−1 · uq−1 uq−1

for q = 2, 3, . . . , m, is an orthogonal basis for W .

Example. Find an orthogonal basis for the subspace W of R4 with the basis
{v1, v2, v3}, where

v1 =


1111
 , v2 =


0125
 , v3 =


00

−15
 .
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Solution. Choose as in the Gram–Schmidt process

u1 = v1 =


1111


u2 = v2 − v2 · u1
u1 · u1 u1 =


0125
 − 84


1111
 =


−2
−103


u3 = v3 − v3 · u1

u1 · u1 u1 − v3 · u2
u2 · u2 u2 =


00

−15
 − 44


1111
 − 1514


−2
−103

 =


8/71/14
−211/14

 .

Hence 


1111
 ,


−2
−103

 ,


8/71/14
−211/14




is an orthogonal basis for W .

6.3. Orthogonal Projections

Orthogonal Decomposition. Let W be an m-dimensional subspace of Rn. Let

U = {u1, . . . , um}

be an orthogonal basis for W (it can be formed using the Gram-Schmidt process).
By applying the Gram-Schmidt process, extend the basis U to an orthogonal basis

{u1, . . . , um, um+1, . . . , un}

for Rn.

Exercise. Show that

W⊥ = Span{um+1, . . . , un}.

Thus, any vector v ∈ Rn can be written as

v = α1u1 + . . . + αmum︸ ︷︷ ︸
v̂

+ αm+1um+1 + . . . + αnun︸ ︷︷ ︸
p

where v̂ ∈ W and p ∈ W⊥.
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Moreover, such a decomposition of v is unique: If v = v̂0+p0, for some other v̂0 ∈ W
and p0 ∈ W⊥, then

v = v̂ + p = v̂0 + p0 ÍÑ v̂ − v̂0 = p0 − p ∈ W⊥

ÍÑ v̂ − v̂0 ∈ W, v̂ − v̂0 ∈ W⊥

ÍÑ (v̂ − v̂0) · (v̂ − v̂0) = 0
ÍÑ ∥v̂ − v̂0∥ = 0
ÍÑ v̂ − v̂0 = 0
ÍÑ v̂ = v̂0 and p = p0.

We showed the following.

Theorem 6.8 (The Orthogonal Decomposition Theorem). Let W be a subspace of
Rn. Every v ∈ Rn can be written uniquely in the form

v = v̂ + p
where v̂ ∈ W and p ∈ W⊥.

The vector projW v := v̂ in the theorem is called the orthogonal projection of y onto
W .

Note that if v ∈ W , then projW v = v.

Computation of Orthogonal Projection.

Example. Let

u1 =  1
−32

 , v = 1009
 , W = Span {u1} .

Find the orthogonal projection of v onto W .

Solution. Let u2, u3 be vectors such that {u1, u2, u3} is an orthogonal basis for
R3. Then

v = α1u1︸︷︷︸
v̂

+ α2u2 + α3u3︸ ︷︷ ︸
p

where
α1 = v · u1

u1 · u1 , α2 = v · u2
u2 · u2 , α3 = v · u3

u3 · u3
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by theorem 6.5. Thus

projW v = v̂ = v · u1
u1 · u1 u1 = 2814

 1
−32

 =  2
−64

 .

Also

v − v̂ = 865
 ∈ W⊥.

We may generalize this idea.

Theorem 6.10. Let W be a subspace of Rn and v ∈ Rn.
• If {u1, . . . , um} is an orthogonal basis for W ,

projW v = v · u1
u1 · u1 u1 + v · u2

u2 · u2 u2 + . . . + v · um

um · um
um.

• If {u1, . . . , um} is an orthonormal basis for W ,

projW v = (v · u1)u1 + (v · u2)u2 + . . . + (v · um)um.

Also, letting U = [
u1 u2 . . . um

]
,

projW v = UUTv.

Proof.
• Let W be a subspace of Rn and

U = {u1, . . . , um}

be an orthogonal basis for W . Extend U to an orthogonal basis

{u1, . . . , um, um+1, . . . , un}

for Rn. We have

v = α1u1 + . . . + αmum︸ ︷︷ ︸
v̂

+ αm+1um+1 + . . . + αnun︸ ︷︷ ︸
p

with

αj = v · uj

uj · uj

for j = 1, . . . , n, by theorem 6.5.
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• If U is moreover orthonormal, then u1 · u1 = . . . = um · um = 1, thereforeprojW v = (v · u1)u1 + (v · u2)u2 + . . . + (v · um)um

= [
u1 u2 . . . um

] 
u1 · v
u2 · v

...
um · v



= [
u1 u2 . . . um

] 
u1
u2
...

um

 v

= UUTv.

□

Example. Let

u1 = 210
 , u2 = −124

 , v =  −25
−11

 , W = Span {u1, u2} .

Then {u1, u2} is an orthogonal basis for W and

projW v = v · u1
u1 · u1 u1 + v · u2

u2 · u2 u2
= 15

210
 + −3221

−124


=  202/105
−299/105
−128/21

 .

Let U be a matrix whose columns is an orthonormal basis for a subspace W of Rn.
• UTU = I.
• The orthogonal projection transformation T(v) = projW v is linear with the

standard matrix UUT .
• UUT is called the orthogonal projector onto W .

Example. Let W = Span


1/
√21/
√20

 ,

 2/3
−2/31/3

.

The orthogonal projector onto W is

UTU = 1/
√2 2/31/
√2 −2/30 1/3

 [1/
√2 1/

√2 02/3 −2/3 1/3
] = 17/18 1/18 2/91/18 17/18 −2/92/9 −2/9 1/9

 .
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For every v ∈ R3,
projW v = 17/18 1/18 2/91/18 17/18 −2/92/9 −2/9 1/9

 v.

The Best Approximation Problem. The best approximation problem is given
• a subspace W of Rn

• a point (vector) v ∈ Rn

finding
• x ∈ W such that dist(v, x) = ∥v − x∥ is minimal

(i.e. dist(v, x) < dist(v, z) for any z ∈ W such that z ̸= x).

Let us consider the orthogonal projection v̂ = projW v. For any z ∈ W , with z ̸= v̂,
we have

v − z = (v − v̂)︸ ︷︷ ︸
∈W⊥

+ (v̂ − z)︸ ︷︷ ︸
∈W

.

So v̂ − z = projW (v − z).

By the Pythagorean Theorem,
∥v − v̂∥2 + ∥v̂ − z∥2 = ∥v − z∥2.

Thus
∥v − v̂∥ < ∥v − z∥.

Theorem 6.9 (The Best Approximation Theorem). Let W be a subspace of Rn and
v ∈ Rn. Then we have

∥v − projW v∥ < ∥v − z∥
for all z ∈ W such that z ̸= projW v.

∥v − projW v∥ is called the distance of v to the subspace W .
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